THE ELEMENTS OF MECHANICS OF MATERIALS; A TEXT FOR STUDENTS IN ENGINEERING COURSES

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649200962

The elements of mechanics of materials; a text for students in engineering courses by C. E. Houghton

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

THE ELEMENTS OF MECHANICS OF MATERIALS; A TEXT FOR STUDENTS IN ENGINEERING COURSES

Trieste

THE ELEMENTS OF MECHANICS OF MATERIALS

A TEXT FOR

STUDENTS IN ENGINEERING COURSES

BY

C. E. HOUGHTON, A.B., M.M.E.

NEW YORK D. VAN NOSTRAND COMPANY 1909

TASSO

GENERAL

COPYRIGHT, 1909, BY D. VAN NOSTRAND COMPANY.

Normood Bress : Set up and electrotyped by J. S. Cashing Company, Norwood, Mass., U.S.A.

•

PREFACE

THIS is not a treatise on the Mechanics of Materials. The efforts of Merriman, Burr, Lanza, and others cover the field so thoroughly that there is no present need of such a work.

It is designed to be an elementary text-book for students in the engineering courses in colleges and universities, where the time allotted to the subject does not exceed three or four recitations per week, for one half year, and where the course is preceded by college courses in mathematics, through integral calculus, mechanics, and physics.

The extreme mathematical treatment of the subject has been avoided, but where the use of higher mathematics leads to clearness they have been freely used.

As it is intended as a text-book, the general cases are discussed fully, leaving the student to derive the formulas for special cases as part of the regular problem work.

At the end of each chapter there are review questions covering the more important parts of the subjects discussed and problems illustrating the same. The solution of one problem of each type has been given to show the application of the general formulas.

The appendix contains tables giving the values of the engineering constants of materials and the formulas commonly used in design, in addition to the tables usually found in books of this character.

The notation has been made uniform with that of Merriman's works, so that his more complete treatise on the subject may be conveniently used as a reference book.

NEW YORK, January, 1909.

111

202033

CHAPTER I

Applied Mechanics

ABTI	CLA										PAGE
1.	Forces in structure	s	8		÷.						1
2.	Axial forces .							12			3
3.	A bar	•	33			23			¥3	\mathbf{x}	3
4.	Internal forces	¥	÷B	*	÷.	•		24	•3	•	3
5.	Tensile or compres	sive	stress	es		• 2			•		4
6.	Unit stress .		•.1	•				÷.			4
7.	Maximum tensile o	or co	mpres	sive	stres	ses					• 5
8.	Shearing stresses			à.	14			S.	•		5
9.	External and inter	nal f	orces		100	÷3			•	\mathbf{x}	6
10.	Deformation of ela	stic	bodie	5		• 2			• 3	\sim	7
11.	Unit deformations		•								7
12,	Modulus or coefficie	ent o	of clas	ticit	y	8	×.				8
13.	The elastic limit	4	4	9000 9	٠.	•	਼				8
14.	Ultimate strength		\$ 0	8	1	6 0		34	.	\mathbf{k}	9
15,	Resilience .		•	*	8	•	*	<i>.</i>		2	10
16.	Ductility		52	•			*				11
17.	Efastic resilience										12
18.	Use of formulas	â., 1	10		2						12
19.	Constants of mater	ials	\$ 3	÷.	24			84		ж.	13
20.	Units	e i	÷	•			*	9 %	•		14
21.	Working stresses;	Inct	ors of	safe	ty						14
22.	Accuracy of calcula	ation	8	•				3.	•	•	15
	Examination quest	ions	•	•	ŝ.			1			16
	Problems .	•		÷	S.						18

CHAPTER II

APPLICATIONS

23.	Bars of uniform strength	· •	-			22
24.	Thin pipes, cylinders, and spheres	1000		6	1	25
	run Pried Granning and Planter					

ARTI	CLE										PAGE
25.	Thick pipes .		2		32	•	¥.	16	•	•	27
26.	Riveted joints	84	÷8	\sim	38			38		•	30
27.	Tension in plates		•::	\sim	18	0.05	×2			10	30
28.	Shear on rivets		+ 2	+						- 60	32
29.	Compression on ri	vets	or pl	ates				2	· .	•	33
30.	General case of a	rivet	ed joi	int	82			38		÷	33
31.	Kinds of riveted j	oints	s 🦾	÷.	. .				1.00	83	35
32.	Efficiency of a rive							200	0.000	t:	37
33.	Stresses due to cha	ange	of te	mpe	ratur	е.					39
	Problems .			121			-				40

CHAPTER III

BRAMS

34.	Kinds of beams	•	22	÷.	3 - E	• 3		a - 1	•	•	46
35.	Reactions at the su	ppor	ts			•				•	47
36.	Uniform and conce	ntra	ted lo	oads						•	47
37.	Vertical shear							S		2	49
38.	Bending moment					28		÷	1 1		50
39.	Resisting shear	13	10	Э¥	•	*0		 (i) 	82	3	51
40.	Resisting moment	•	÷						52	2	52
41.	Use of formula	•			1.0				•	•	55
42.	Shear and moment	diag	ram	я.	•		÷.		•	9	58
43.	Shear diagrams	1	÷.				36	÷	3 8	(\mathbf{i})	59
41.	Moment diagrams	ж		÷		•	œ	a	£	1	60
	The relation betwe								omet	nt	63
46.	Relative strengths	of si	mple	and	canti	lever	bean	ns	•		61
	Overhanging beam								2		65
48,	Beams of uniform	stren	igth	÷.	-3	2	3 4	•	¥2	÷.	66
49.	Moving loads .			12	÷1			100		۲	67
50.	Use of formula	κ.		19	80	*	28	80			69
51.	Examination ques	tions			÷2	2					70
	Problems .										73

CHAPTER IV

TORSION

52.	Derivation of formula	24.114	-	• 11		•		83
	Modulus of section				÷.	•	3	86
54.	Square sections .	S						86

ARTI	CLE								PAGE
	Illustrations		25		34				57
56.	Twist of shafts .	100				•		+2	88
57.	Relative strengths and	stif	fness				14		89
	Horse power of shafts								89
59.	Shaft couplings .						14		90
60.	Modulus of rupture fo	r tor	sion	۰.		1			92
61.	Helical springs .	54	×.		39	•		÷3	93
	Examination question	s .	•0		÷.		34		94
	Problems								95

CHAPTER V

THE ELASTIC CURVE

		- C	- C.		•1		•	99
63.	The equation of the elastic c	urve			•31		•	99
64.	Deflection of beams .							102
65.	Fixed or restrained beams							105
66.	Beams fixed at both ends	1	÷.	÷.		27		107
67.	Continuous beams	42	*	84	•3	134	.	109
82	Examination questions .	•	10	19	1 0			114
	Problems							116

CHAPTER VI

LONG COLUMNS

68.	Stresses in long column	s				÷2		•	123
69.	Euler's formula for long	g co	lumn	s .		:22			124
70.	Columns with round or	pin	enda						125
71.	Columns with square, f	lat,	or fix	ed en	ds				126
72.	Columns with round an	id se	quare	enda	5.			40	128
73.	Rankine's formula for l	ong	colu	mns				10	131
74.	Applications	•				•	.	•	135
	Examination questions		*						137
	Problems			÷.		1.1			139

CHAPTER VII

COMBINED STRESSES

75.	Stresses due to force		52					2.1	143
76.	Tension or compression	comb	ined	with	bend	ling		- 21	143

vii

ARTI	CLE								PAGE
77.	Roof rafters			÷.	÷ .			÷ .	147
78.	Eccentric axial loads								149
79.	Shear and axial stress		35					a - 5	149
80.	Maximum stresses .								150
81.	Horizontal shear in beam	ns		÷				• •	152
82.	Maximum stresses in bea	ams						1. H.	156
	Examination questions			2	8			ž – 24	158
	Problems		÷2			•	•		160

CHAPTER VIII

COMPOUND BARS AND BEAMS

83. Definition		9 - 3 7 7 67 14 1	1632-83 112	202232 19 2 0			84	163
84. Compound columns, alterna	te la	vers			÷.		÷.	163
85. Compound columns, longitu			ers	0.00	•			163
S6. Compound beams					- 3			165
87. Reënforced concrete beams				(66)	- 2	2		166
88. Straight line formula for rei	info	reed o	coner	ete b	eams	\sim		166
Examination questions .	•					\sim		173
Problems	•	*	1	8118		*	•	174
Tables, Explanation of .				23402				176
Table 1. Notation								176
Table 2. Fundamental formulas		1					1	178
Table 3. Derived formulas .					÷.			179
Table 4. Properties of beams	25		24					182
Table 5. Average constants of n	nate	rials		6.03				183
Table 6. Properties of sections								184

viii