ALTERNATING CURRENTS. PART I-II

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649172962

Alternating currents. Part I-II by C. G. Lamb

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

ALTERNATING CURRENTS. PART I-II

Trieste

ALTERNATING CURRENTS PART I

.

L ALTERNATING CURRENTS

PART I

BY

C. G. LAMB, M.A.

CAMBRIDGE AT THE UNIVERSITY PRESS

1921

1 \mathbf{e}_{i}

PREFACE

Some excuse is desirable for the act of adding to the number of books dealing with this subject. It is one in which the method of treatment must vary considerably with the preliminary attainments of the student, the time available for the course, and its proposed scope. It follows that a lecturer meets with some difficulty in recommending a text-book to fit the special scheme of instruction he has to adopt.

The present book is the first of a short series of Notes intended primarily to assist a student in writing up his lectures; they are of the nature of a full explanatory syllabus of the course of lectures given to Third Year students in the Engineering Laboratory, and are in no wise designed to form a text-book on the subject. In consequence the treatment is necessarily condensed; and further, the limitation of the time available for the course has led to a certain amount of selection in the subjects dealt with; what such omissions should be must always be a matter of opinion. No examples are appended, as these are provided for separately, or can best be composed by the lecturer.

The author is indebted to Mr E. B. Moullin, M.A., of Downing College, for revising the proofs; his hearty thanks are also due to Mr J. B. Peace, M.A., of Emmanuel College, the University Printer, who most kindly read the original manuscript and suggested numerous improvements in the treatment and presentation of the subject.

C. G. L.

CAMBRIDGE, October, 1921. V

CONTENTS

ART	e								PAGE
1.	ALTERNATING QUANTIT	TES		*	5.52			t::	1
2.	VALUE OF AN ALTERNA	TING	QU	JANT	ITY	4	÷	2	2
3.	RELATION BETWEEN D	IFFEI	REN	T VA	LUES	ι.	x	\$ð	3
4.	THE CURVE OF SINES	:e::	æ	*		9		83	4
5.	VIRTUAL AND MEAN		8	<u>.</u>	53	2		<u>ta</u>	5
6.	RATE OF CHANGE AND	INTE	GR	AL	12-2		$\widehat{\bullet}$	≨ 8	5
7.	COMBINATION OF HARM	IONIC	e qu	JANT	TIES		×	82	6
8.	ALTERNATING E.M.F.	•2	19		83	3:5	38		9
9.	THE THREE PROPERTIN	es oi	ł A	CIRC	UIT				14
10.	INDUCTANCE	4	2	43		2		43	17
11.	CONDENSER		(R)		15	18	\times	# 3	20
12.	SERIES CIRCUITS .	1.00	3	20	:		8	5	22
13.	WATTMETER ERROR	6	3					8	25
14.	PARALLEL CIRCUITS	848	÷.	a	10	3	4	2	26
15.	CIRCLE DIAGRAMS .	(4))		×	÷.	10		85	28
16.	APPROXIMATE AIR-COR	ED F	EA	CTAN	CES	2		5	30
17.	IRON-CORED REACTANO	SES	2	22	275	71 <u>1</u>		10	30
18,	ALTERNATIVE TREATM	ENT		*	1	5	Э¢	÷	36
19.	EDDY CURRENT LOSSE	s		×	80	2		80	37
20.	AIR GAP	2	2	125	20	•	23		39
21.	MAXIMUM PHASE ANGL	E	8	2	82	14-1	S.		42
22.	TRANSFORMER, IDEAL	FORM	ı		82			8	43
23.	THE CORE IMPERFECTI	IONS	8		15		×	×	44
24.	RESISTANCE IMPERFEC	TION	S		8	•	8	2	45
25.	NON-EQUALITY OF FLU	IXES		34	¥9	243	÷.	35	45
26.	EQUIVALENT CIRCUIT	e	38	×	85		98	*	50

NIE

CONTENTS

viii

ART				and the later of the later								PAGE
27,	SHORT (IRCU	IT AS	CD OI	PEN (сінс	UIT	TEST		•	•	58
28.	VECTOR	DIAG	RAM	OF E	QUIN	ALE	NT (CIRCU	ЛТ	33	÷	54
29.	REGULA	TION	*	£2	5	×	*	13	8		*	55
30.	MEASUR	EMEN	T OF	REG	ULAT	TION		1	1.	\approx	<u>85</u>	57
31.	CURREN	T LOC	US	8	1	ł.	题					57
32.	DETERM	INATI	ON C	F PF	IMAI	RY C	CRR	ENT	33	Зř	×.	58
33.	VOLTME	TER T	RAN	SFOR	MER		*	•	3	8		58
34.	CURREN	T TRA	NSF	ORMF	\mathbf{R}	*	87	12	8	œ		58
35.	QUADRA	TURE	TRA	NSFC	RME	R	8	•	÷			59
36.	SUMPNE	R WA	TTME	TER	3 4	¥	фЭ	546	34	2	\mathbf{z}_{i}	60
37.	AUTOTR.	ANSFO	ORME	R	38	*	*	: •3	29	×	×:	61
38.	EFFICIE	NCY T	ESTS		22	2	25	3.9%	18	15	23	62
39.	SUMPNE	R'S TH	ST	50		ā		\rightarrow	6		•	63
40.	HEATING	G ANE	coc	LING	1	12 1	ŝ	163	3	$\widetilde{\mathbf{x}}$	$\overline{\mathcal{D}}$	65
41.	CONSTAN	STS	20	3.63	24	×	83	200	92	×		70
42,	SHELL A	ND C	ORE			*	8 2	3277	88	\sim	8 2	71
INI	DEX .	(j.		æ	-5		<u>8</u>	2343	36		Đ	73

9