SWITCHES AND CROSSINGS. FORMULAE FOR ASCERTAINING THE ANGLES OF CROSSINGS, THE LENGTHS OF SWITCHES, aND THE DISTANCE OF THE POINTS OF THE
 CROSSINGS, AND THE HEELS OF THE SWITCHES FROM THE SPRING OF THE CURVE

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649716838

Switches and Crossings. Formulae for Ascertaining the Angles of Crossings, the Lengths of Switches, and the Distance of the Points of the Crossings, and the Heels of the Switches from the Spring of the Curve by William Donaldson

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd.
Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

WILLIAM DONALDSON

SWITCHES AND CROSSINGS. FORMULAE FOR ASCERTAINING THE ANGLES OF CROSSINGS, THE LENGTHS OF SWITCHES, AND THE DISTANCE OF THE POINTS OF THE
CROSSINGS, AND THE HEELS OF THE SWITCHES FROM THE SPRING OF THE CURVE

SWITCHES AND CROSSINGS.

SWITCHES AND CROSSINGS.

FORMULA

wou abcretaining

THE ANGLES OF OROSSINGS, THE LENGTHS OP GWITCHES, AND THE DISTANCES OF THE POINTS OF THE CROSSINGS AND THE HBELS OF THE SWITCHFB FROM THE SPRINGING OF THE CURVE.

BY

WILLIAM DONALDSON, M.A., A.I.C.E., AUTHOE OF A TRRATHE OK ORLTOOR ARCJRS

LONDON:
E. \& F. N. SPON, 48, CHARING OROSS.
1871.

Tramoportation mowruer

CONTENTS.

CHAPTER 1.

PRE
ExpLAXATION OF THE SiEDDOIA 1
CHAPTEER IL.
Switches and Fabt Ponfte.
Section I.-Length of Switches and Position of Heels of Ewitches 3
II.-Splay of Switches 7
III.-Fast Points 10
IV.-Values of Constants 12
CHAPTER III.
Stingle-qadge Roadb: Analge of Cbobbines and their Pobitions.
Seotion I.-Single-line Junctions 14
II.-Dorble-line Junctions 17
III.-Three Thrown 24
IV.-Cross-over Roads 26
V.-Through Rueds 35
VI.-Croesings on the Level 59
CEAPTER IV.
Doubliz-gavge Rohds: Angles of Crogginge and their Position.
Skction I.-Single-line Junctions 66
II.-Double-line Junctions 72
III.-Three Throws 79
IV.-Cross-over Roads 34
V.-Through Roads 107
VI.-Crossings on the Level 129

CHAPTER V.

Recapitulation of Fobmulas is Chaptres II. and III., and Remares ON THELR PRAGIICAL DEE.

General Explanations, and further Simplification of the Formuls .. 129 Diviaion I.-Formula in Terms of the Radii 150
II.-Fonnulx in Terms of the Leeds of the Crossings 175
III.-Numerical Evaluations of the Coefficienta in the Formulxe for $4 \mathrm{ft}, 8 \frac{1}{1}$ in. Gauge Roads, and 7 ft . Garge Roade, and Application of the Results to simple cases of common ocourrence
Numerical Rules for $4 \mathrm{ft} .8 \mathbf{i n}$ in. Gauge 192 Numerical Rules for 7 ft Gauge 200

CHAPTER VI.

Redapitulation of Formula in Chafter IV., and Remarige on their PRACTIOAL vEE
General Explanations, and further Simplification of the Formalis .. 209
Dryimos I,-Formalen in Terms of the hadii 217
II.-Formule in Terms of the Leads of the Crussinga 233

III-Numerioal Evaluations of the Coefficients specially relating to the Mixed Gaugu of $4 \mathrm{ft}, 81 \mathrm{in}$, and 7 ft , and Application of the Resulte to simple cases of common ocearrence

INTRODUCTION.

In the following investigatione, a symbol is used to denote every element, so that the formula will be applicable to every gauge, and to every section of rail.
The formule are based on the assumption that a sufficient degree of approximation to exactness is obtained by making the sine of the angle of the crossing equal to its circular measure. They have been still further simplified by leaving out all squares, products, and terms of higher dimensions, of the spaces between the centre lines of contigoous rails, when these are not multiplied by factors greater than unity.

All the ordinary cases of junctions, three throwe, cross-over and through roads, have been discussed, so that no one who has mastered the method adopted will have any difficulty in making out similar formula for any special cases which may arise.
rail of the main line by the $n^{\text {th }}$ rail of the branch, the suffix n referring to the number of the branch rail, and the power m to the number of the main-line rail. Thus, the symbols denoting the croesings of the main-line rails by the branch rails, will be:

Single-gauge Roads.
Case I.-Single-line junction, $c_{1}{ }^{*}$.
Case II.-Double-line jumetion, $c_{1}{ }^{2} c_{1}^{8} c_{1}{ }^{4}, \quad c_{1}^{2} c_{2}{ }^{4}, \quad c_{3}{ }^{4}$.

Doublegauge Roads, one Rail common to bath Roads.

Case I,-Single-line jumetions, $c_{1}^{1} c_{1}^{\text {最, }} c_{3}^{\text {¹ }}$.
Case II.-Doublo-line junctions, $c_{1}{ }^{1} c_{1}^{3} c_{1}{ }^{4} c_{1}^{3} c_{1}{ }^{4}, e_{8}^{3} c_{4}^{4} c_{3}^{3} c_{3}^{4}, c_{8}^{4} c_{4}^{3} c_{8}^{8}$, $c_{4}^{3} c_{4}^{8}, c_{5}^{6}$.

Although in a single-line junction there cannot be more than two or three, and in a double-line junction more than four or six, branch-road rails, since the branch-road rails after leaving the main-road rails which they touch, may cross othor roads parallel to the first, there may be any number of main-road rails. These are numbered in sequence after those in contact with the branch-road rails.

The symbol c_{m} " is likewise used to designate the circular measure of the angle of the crossing of the $m^{\text {th }}$ main-line rail by the $n^{\text {eh }}$ branch-line rail, and also its position on any plan of the roads.

The points, where the centre lines of the 1st, 2nd, 3rd, \&c., rails of the branch roed touch the centre lines of the 1st, 2 nd , 3 rd , \&c., rails of the main line at the apringing of the curve, are designated by the symbols $\mathrm{S}_{1}, \mathrm{~S}_{8}, \mathrm{~S}_{5}$, \&ce, and the positions of the heels of the switches of the 1st, 2nd, 3rd, \&c., main and branch rails by the symbols $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$, \&c.

The points, where normals through the springing of the branch curve and through the heels of the switches cut any main-line rails parallel to those, which the branch rails meet at a common tangent, are likewise designated by the symbols S_{m}, \&c., H_{m}, \&c., respectively, the suffix m referring to the number of the main-line rail.

Symbols which have the aame Meaning for both Single and Double-gauge Roade.
$\mathrm{R}=$ radius of main-line curve.
$r=$ radias of branch-line curve.
$s=$ interval between the centres of the contiguous inner rails of a double line, commonly called the six-foot.
$t=$ thickness of upper fange of rails.
$0=$ clearance between the rails at the heels of the switohes.
Special Symbols for Single-gauge Roads.
$g=$ interval between the centree of the rails, which regulates the gange, hereafter called the gauge.

Special Symbole for Double-gauge Roads, in which one Rail is common to both Roads.
$g=$ interval between the centres of the rails, which regulates the gauge of the wider road, hereafter onlled the gatge.
$d=$ interval between the centres of the two rails which are not common to both roads.
Other symbols occur, which refer to special cases, and are explained in the sections, which discuss those special cases.

CHAPTER II.

awitches.
Section I.-Lengtit of Switches and Pobition or Heela of Switches.
IT is in practice impossible to use switches of the length theoretically required to make both roods perfect, moless the curve of the branch line is very sharp, or is lesving a main-line road which curves in the opposite direction. A limit of deviation from correct curvature must therefore be fixed upon, and the condition which determines the minimum length of switch is simply that this amount of deviation is not to be exceeded.

Whatever length of switch may be adopted, the heel of the switch must be in its proper position; that is, at the point where

