A STUDY OF THE HISTOLOGICAL CHARACTERS OF THE PERIOSTEUM AND PERIDENTAL MEMBRANE
G. V. BLACK

A STUDY OF THE HISTOLOGICAL CHARACTERS OF THE PERIOSTEUM AND PERIDENTAL MEMBRANE
A STUDY

OF THE

HISTOLOGICAL CHARACTERS

OF THE

Periosteum and Peridental

MEMBRANE.

BY

G. V. BLACK, M.D., D.D.S.

Professor of Pathology in the Chicago College of Dental Surgery.

WITH 67 ORIGINAL ILLUSTRATIONS.

CHICAGO:

W. T. KEENER,

96 Washington Street.

1887.
PREFACE.

The contents of this volume appeared in serial form in the *Dental Review*. In reviewing the matter for publication in book form, I find that the subject matter proper for a preface is included in the preliminary chapter and at other points in the progress of the work. I have concluded therefore to let it remain as written, believing that it will serve the reader fully as well, or better, than to bring it together upon this page. This volume is almost entirely a record of my own *personal* observations, written in the personal or lecture style. A division into chapters has been made for the convenience of the reader.

The volume is now offered to the profession with the hope that it may in some measure supply the want that has been felt for a more thorough study of the histological characters of the periosteum and peridental membrane.

Jacksonville, Sept. 1, 1887.

G. V. B.
LIST OF CONTENTS.

PREFACE .. 1
CHAPTER I.—Preliminary 1
CHAPTER II.—Tissue elements and their distribution; Development;
Matrix; Cells; Fibroblasts; White fibrous tissue; Areolar tissue;
Yellow elastic tissue; Cellular elements of the fibrous membranes;
Cartilage and bone; Relationship of the connective tissues 6
CHAPTER III.—Methods of the preparation of the tissues 17
CHAPTER IV.—The periosteum; Histological components of the
periosteum; Outer layer; Internal layer; Non-attached inner
layer, residual fibers, attached inner layer; Elastic fibers, blood
vessels, nerves .. 22
CHAPTER V.—Cells of the periosteum; The osteoblasts; Functions
of the osteoblasts; Bone corpuscles; Osteoclasts .. 37
CHAPTER VI.—Formation of bone; Subperiosteal formation of
bone; Subperiosteal formation of Haversian canals; Lamination
of bone; Removal of residual fibers; Formation of secondary
Haversian canals; Intra-membranous formation of bone 45
CHAPTER VII.—Growth of bone under tendinous attachments and
strong fibrous Bursae; Intra-cartilaginous formation of bone;
Osseification in the epiphysis; Osseification in the diaphysis;
Chondroblasts and the absorption of cartilage; Formation of
the periosteum beneath the perichondrium ... 53
CHAPTER VIII.—The peridental membrane; Principal fibers of the
membrane; Arrangement of the fibers; The dental ligament;
The gingiva; Physical functions of the membrane 71
CHAPTER IX.—Interfibrous elements of the peridental membrane;
Blood supply; Sensory function; Nerve supply 84
CHAPTER X.—Lymphatics of the peridental membrane; Hard
formations within the membrane .. 90
CHAPTER XI.—Osteoblasts and alveolar wall; Movements of the
tooth in its alveolus; Relations of the growth of the alveolar
processes to the lengthening of the face 96
CHAPTER XII.—The cementum and cementoblasts; Lamellae of the
cementum; Incremental lines; Growth of cementum continuous;
Fibers of the cementum .. 102
CHAPTER XIII.—Irregularities in the growth of the cementum;
Hypertrophies ... 111
LIST OF CONTENTS.

CHAPTER XIV.—Absorptions occurring in the alveolus; Absorption of the roots of the temporary teeth; Absorption not dependent upon the vitality of the tissue being absorbed; Condition of the bone corpuscles during the progress of absorption; Irregularities of absorption; Absorbed areas in dentine always repaired by deposits of cementum; Absorption of the roots of permanent teeth; Absorptions of the alveolar wall; Cirvical absorptions; Detachment and reattachment of the principal fibers of the periodental membrane ... 118
LIST OF ILLUSTRATIONS

Fig. 1.—Embryonal connective tissues.
Fig. 2.—The same a little more developed.
Fig. 3.—The cells developed into fibroblasts.
Fig. 4.—White fibrous tissue.
Fig. 5.—Old white fibrous tissue.
Fig. 6.—Coarse white fibers showing mode of division.
Fig. 7.—Coarse white fibers breaking up into fine fibers.
Fig. 8.—Cross sections of coarse white fibers.
Fig. 9.—Reticular fibers, showing mode of division and the multipolar cells.
Fig. 10.—Cross sections of reticular fibers.
Fig. 11.—Connective tissue cells from which reticular fibers are developed.
Fig. 12.—Network of elastic fibers from the point of reflection of the mucous membrane of the lip from the gum.
Fig. 13.—Network of elastic fibers teased out from elastic tendon.
Fig. 14.—Elastic fibers showing their disposition to curl up when cut or broken.
Fig. 15.—Cross sections of elastic fibers.
Fig. 16.—Tissue of the dental pulp.
Fig. 17.—Non-attached periosteum from the femur of a kitten.
Fig. 18.—Periosteum from the shaft of tibia of pig.
Fig. 19.—Periosteum from lower end of femur of a kitten, penetrating fibers, osteoclasts.
Fig. 20.—Attached periosteum from beneath the attachment of the muscles of lower lip.
Fig. 21.—The more usual form of the attached periosteum.
Fig. 22.—Network of elastic fibers from the coarse fibrous layer of periosteum.
Fig. 23.—Bone, with portion of the inner layer of attached periosteum and penetrating fibers.
Fig. 24.—Bone, showing a solid subpenosteal growth and the manner of forming secondary Haversian systems.
Fig. 25.—Margin of growing bone on which the osteoblasts are very much crowded.
Fig. 26.—Cross section of growing bone showing the Haversian canals and the plan of their subpenosteal formation.
Fig. 27.—Absorption of bone under the attached periosteum.
Fig. 28.—Intra-membranous formation of bone.
Fig. 29.—Growth of bone under the attachment of tendo-Achillis.
LIST OF ILLUSTRATIONS.

Fig. 30.—Epiphysial intra-cartalogenous formation of bone. Manac in which absorption occurs.
Fig. 31.—Epiphysial intra-cartalogenous formation of bone.
Fig. 32.—Central section of head of tibia showing relations of diaphysal and epiphysal formation of bone.
Fig. 33.—Changes which occur in diaphysal intra-cartalogenous formation of bone.
Fig. 34.—Ibid, supplement to Fig. 33.
Fig. 35.—Cross section of rib of young kitten showing the cartilage remaining in the newly formed bone.
Fig. 36.—Lengthwise section of incisor tooth with its membrane and alveolar process.
Fig. 37.—Cross section of the root of a temporary tooth with its membrane and alveolar process.
Fig. 38.—Cross section of cuspid tooth (adult) with its membrane and alveolar process.
Fig. 39.—Fibers of periodental membrane passing from the cementum to the alveolar wall.
Fig. 40.—Cross sections of central and lateral incisors near the gingivae, showing the tissue intervening between the teeth.
Fig. 41.—The periodental membrane from a perpendicular section of the tooth and alveolus of a pig.
Fig. 42.—Fibers emerging from the cementum and breaking up into fasciculi.
Fig. 43.—A group of fibers emerging from the cementum and radiating fan-like.
Fig. 45.—Portion of alveolar wall, and portion of the periodental membrane, showing the osteoblasts.
Fig. 46.—Very large fibers of periodental membrane with inter-fibrous tissue.
Fig. 47.—Lymph follicle, or node, from periodental membrane.
Fig. 48.—Lymph ducts crowded with lymphoid cells.
Fig. 49.—Calcospherite-like spherule in the tissues of the periodental membrane.
Fig. 50.—Cementum and portion of periodental membrane.
Fig. 51.—Perpendicular section through the rim of the alveolar wall.
Fig. 52.—Diagramatic representation of the movement of the teeth in their alveoli. Minimum movement.
Fig. 53.—Ibid. Maximum movement.
Fig. 54.—Cementoblasts isolated to show their forms.
Fig. 55.—Cementoblasts in situ with cross sections of the principal fibers of the periodental membrane.
Fig. 56.—Horizontal section of cementum showing cross sections of its fibers.
Fig. 57.—Perpendicular section of the cementum of the pig, showing its fibers.
Fig. 58.—Cementum of pig from a dried section.
Fig. 59.—Hypertrophy of cementum. Nodule on the side of the root of a lower molar.