ELEMENTS OF DYNAMIC: AN INTRODUCTION TO THE STUDY OF MOTION AND REST IN SOLID AND FLUID BODIES

Published @ 2017 Trieste Publishing Pty Ltd

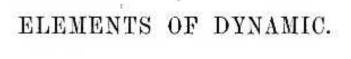
ISBN 9780649241699

Elements of dynamic: an introduction to the study of motion and rest in solid and fluid bodies by W. K. Clifford

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017


This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

W. K. CLIFFORD

ELEMENTS OF DYNAMIC: AN INTRODUCTION TO THE STUDY OF MOTION AND REST IN SOLID AND FLUID BODIES

Phys. Mech C

ELEMENTS OF DYNAMIC

AN INTRODUCTION TO THE STUDY OF

MOTION AND REST

IN SOLID AND FLUID BODIES

BY

W. K. CLIFFORD, F.R.S.

LATE FELLOW AND ASSISTANT TUTOR OF TRINITY COLLEGE, CAMBRIDGE;
PROFESSOR OF APPLIED MATHEMATICS AND MICHANICS AT
UNIVERSITY COLLEGE, LONDON.

PART I. KINEMATIC.

London: MACMILLAN AND CO. 1878

[All Rights reserved.]

Cambridge:

PRINTED BY C. J. CLAY, M.A. AT THE UNIVERSITY PRESS.

4269 190

6

CONTENTS.

BOOK I. TRANSLATIONS.

C	HA	PT	$_{\rm ER}$	1. 8	TEF	S.				
										PAGE
Introduction		Ş.:	9		100	314				1
On Steps		4	50		06	22		0)	83	3
Composition of Steps.	Geor	meti	3.	190	68	11+	330	183	50	4
Composition of Steps	Alge	bra		1	-	14				7
Resolution and Descripti	on c	f St	eps	137		114	6		13	11
Representation of Motion	n	360	- 30	790		339	50	100	63	14
Uniform Motion .		120	1.	-		107	1.09			15
Uniform Rectilinear Mot	ion	4	80	-		123				16
Uniform Circular Motion	141	40	(4)	192	224	1.7	69	100	20	18
Harmonic Motion .			-		100		89	100		20
On Projection .			2	3	1	1	8	1		24
Properties of the Ellipse			18	100		115	1		100	27
Elliptic Harmonic Motio		90	81			2.7	000	-		31
Compound Harmonic Me			781						0.00	33
Parabolic Motion ,	1000	-		ä	8		0.0			38
СИА	PT1	2R	11.	VEI	LOCI	TIE	S.			
The Direction of Motion	. (3	Can	ents	.) .	- 25	716			100	41
Exact Definition of Tang	ent	1	1		1	10	-		1	44
Velocity. Uniform		34.5	(4)	(4)	66		2.4	109	(0)	47
Velocity. Variable		30	(40)	0.01	14	204	3.00	50.4	100	51
Exact Definition of Veloc	sity		4.5	9			32	5		56
Composition of Velocitie	4	10	100		3			339	1	59
Fluxions	60	*	30	(¥).	595	26	500	59	0.00	62
Derived Functions	71				18	0.5				6.1
Hodegraph. Acceleratio				1	-	8	100	9		67
The Inverse Method		1701		133	000	00	11.0	0.4	0.0	68

CONTENTS.

										PAGE
Curvature	90	:20	0.0	246	1,8	LA.	-		0.00	73
Tangential and Norma	l Ac	celerat	inn		17.7	14				77
Logarithmic Motion			1				2.			78
On Series	*	(4)	4			14	119		100	81
Exponential Series	100	141		St	0.6	, int	99	600		83
The Logarithmic Spira	al.									85
Quasi-Harmonic Motic	n in	a Hyj	erbo	da	(9)	34	9		(4)	89
CHAPT	rer	111.	CF	ENTI	RAL	OR	BITS			
The Theorem of Mome	ont.					11				92
Product of two Vectors			8	- 35	35					94
Moment of Velocity of				25			-	347		96
						336	0.7	(0)		1577.53
Related Curves .							2		20	100
Acceleration Inversely		7			CC					200
Elliptic Motion .			(6)		0.0	99	(iii			
Lambert's Theorem					(2)	*	1	103	2.5	
General Theorems. T							10	7		110
General Theorems, T		ritical	Ort	Fit.	×.	8%				
Equation between a sr	$d\theta$			383	(8)	33			1(*)	116
ВО	ок	11.	R	OT/	TIC	ONS	š.			
										19
		CHA	PT	ER	Ι.					
Steps of a Rigid Body	*	*		36	3	3	ě	24	090	118
СНАРТ	ER	11.	VEL	oer	TY-S	TST	EMS	5.		
Spins	27		V.	V	125	2	9			122
Composition of Spins			į.			,				123
Velocity-Systems. Tw		¥0			1967					125
Composition of Twists		- 33	9		*	9				126
Moments			28	*	0					132
Instantaneous motion	of a	Biold 1	Bents	5	140	*				
Curvature of Roulette		augut .			3.0	(8)		*	34	136
Instantaneous Axis		5	\$1	- 5	*		35	*		140
Degree of Freedom	10			48 	4	•	*		7	141
			1	0		(4)	66		300	143
avoide and Evolute	0.0		6	(0)	*2	+	1			144

	٦	i.	
٦	۲	i	i

CONTENTS.

CHAPT	TII GG	SPECIAL.	PROBLEMS.	
CHALL	Part III.	COLUMN TO THE PARTY	PRODUCION	ı

CHAPTER 1	П.	SPE	CIA	L P	ROB	LEN	IS.		
									PAGE
Three-Bar Motion	7.1	40	165	190	(4)	34	33	19	146
Circular Roulettes .	30	4 240	000	ec		224			151
Double Generation of Cycloi					32		272		152
Case of Radii as 1:2 .		•	4		140		17		153
Envelop of Carried Roulette	1	¥0	20	660		2.0	174	-	155
Воок	I	П.	STI	RAI	NS.				
CHAPTE	R	ı. sı	RA	IN-S	STEP	S.			
Strain in Straight Line .	4.		48	*	32	(4)	22	77.	158
Homogeneous Strain in Plan	e	4.0	0.0	*	*		100	154	159
Representation of Pure Stra		y Ellip	80			1			160
Representation of the Displa				1	3	18	0	8	161
Linear Function of a Vector		70	93		(4)			136	162
Properties of a Pure Function		26	***	320	200			224	164
Shear	7. 180	ji)	į.			8	3	702	167
Composition of Strains .	ç.	100							168
Representation of Strains by				96		(4)	396	69	170
General Strain of Solid. Pr							12		172
Representation of Pure Strai						÷			176
				*		200		22	177
			20		500			200	181
Displacement Quadric . Linear Function of a Vector	1	ž	0		9	į.	÷	Ü	185
Varying Strain								ů,	188
raiying Buam	***	80			500	30	500		100
¥.									
CHAPTER I	I.	STRA	IN-	VEI	oci	TIE	8.		
Homogeneous Strain-Flux		401	$g_{\rm H}$	40	90		.*:) <u>*</u> :	191
Circulation			ž).						194
Circulation	IS.	20	33						197
Lines of Flow and Vortex-Lin	nes		70				*	+	199
Circulation in Non-Homogen	eom	Strain	n-Flu	×	40	24.0		-50	200