THE ELECTRIC FURNACE; ITS EVOLUTION, THEORY AND PRACTICE

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649114610

The electric furnace; its evolution, theory and practice by Alfred Stansfield

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

ALFRED STANSFIELD

THE ELECTRIC FURNACE; ITS EVOLUTION, THEORY AND PRACTICE

Trieste

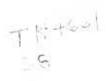
THE ELECTRIC FURNACE

ITS EVOLUTION, THEORY AND PRACTICE

BY

ALFRED STANSFIELD, D.Sc.

Associate of the Royal School of Mines Propessor of Metallurgy in McGill University Montreal


WITH FIFTY-THREE ILLUSTRATIONS

THE CANADIAN ENGINEER TORONTO

HILL PUBLISHING COMPANY

NEW YORK AND LONDON

10

GENERAL

Entered according to Act of the Parliament of Canada, in the year one thousand nine hundred and eight, by ALFRED STANSFIELD, D.Sc., at the Department of Agriculture.

PREFACE.

On my first visit to Canada, in 1897, I constructed an electric furnace and showed it in operation at a lecture on Canada's metals, which was delivered by the late Sir William Roberts-Austen. The application of electrical heat to Metallurgy has always interested me greatly and I hope that this little book may serve to instil this interest in others, and to help forward the application of electric smelting in a country which is so rich in water-powers and mineral resources.

This book originated in a series of papers, written about a year ago for the "Canadian Engineer," in which I endeavoured to present, as simply as possible, the principles on which the construction and use of the electric furnace depend, and to give an account of its history and present development.

The original papers were written at a time when the experiments of Dr. Haanel, at Sault Ste. Marie, were attracting public attention, and a large section of the book has been devoted to the consideration of these and other advances in the electrometallurgy of iron and steel.

I wish to thank all who have helped me in the preparation of this book, including Dr. Haanel, whose valuable monographs have formed the basis of my chapter on iron and steel, and to whom I am indebted for additional information on this branch of the subject: Prof. J. W. Richards, who has taken an interest in my work, and whose book on "Metallurgical Calculations" has been of considerable assistance in writing the chapter on furnace efficiencies; Mr. E. A. Colby, who gave me information in regard to his induction steel furnace and a sketch for Fig. 25; Mr. Francis A. J. Fitzgerald, who supplied me with the data for Table X.; the editor of the "Electrochemical and Metallurgical Industry," who loaned the block for the frontispiece, and the International Acheson Graphite Company, who gave me information about their furnaces and lent the block for Fig. 40. I also wish to thank those of my personal friends who assisted me in the tedious work of proof-reading.

ALFRED STANSFIELD.

November, 1907. McGill University, Montreal,

CONTENTS.

CHAPTER I.

History of the Electric Furnace.

	Page.
The electric arc	
V. Siemens' electric furnaces	3
lowles brothers' electric furnaces	
Iall and Heroult aluminium processes	6
I. Moissan's researches	
Production of the diamond	
Villson's carbide furnace	9
Carborundum	
Ferro-alloys	12
ron and steel	12

CHAPTER II.

Description and Classification of Electric Furnaces.

Definition of electric furnace .	1.1.1	22	÷.,	1.	23	140	ŝ.	67	4	÷.		÷	4	44	à	23	33	8 - S B
Heat produced by electric current	nt							+ ; + ;			e. 4.			•				1
Essential parts of electric furna-	ce		• •		5.		1	1.		1				÷.,	2	14		. 1
Classification of electric furnaces	s °									-						+ 17		. 1
Arc furnaces																		
Resistance furnaces																		2
with special resistor			ι.	Ξ.	4	1.		1					2	÷.,	5	1		. 2
without special resistor																		. 2
electrolytic																		

CHAPTER III.

Efficiency of Electric and other Furnaces, and Relative Cost of Electrical and Fuel Heat.

P	age.
Cost of electrical energy	
Efficiency of furnaces	
Calculation of furnace efficiencies	37
Heat units	38
Melting temperatures of metals, and amounts of heat required to melt them	40
Calorific power of fuel	41
Table of calorific powers	43
Calculation of efficiency of electric steel furnace	45

CONTENTS.

CHAPTER IV.

Electric Furnace Design, Construction and Operation.

General considerations	48
Materials of furnace construction	49
Fireclay bricks	49
Silica bricks	50
Lime	50
Magnesia	51
Dolomite	52
Alumina	52
Carbon	53
Carborundum	54
Siloxicon	54
Table of refractory materials	55
Heat insulation	50
Table of heat conductivities	57
Furnace walls without refractory materials	58
Production of heat in electric furnaces	60
Voltage required for electric furnaces	66
Voltage of arc furnaces	67
Voltage of resistance furnaces	60
Regulation of electric smelting	71
Resistors	73
Electrical resistivity	75
Resistivity of powdered coke	75
Resistivity of carbon rods	76
Resistivity of molten slags and iron	78
Electrodes.	79
Electrode holders	80
Measurement of furnace temperatures	82
Conclusion	81

CHAPTER V.

Production of Iron and Steel in the Electric Furnace.

Varieties of Iron and Steel	85
I. Production of steel from scrap, pig-iron and iron ore	86
Heroult steel furnace	86
Keller steel furnace	02
Kjellin steel furnace	0.5
Colby steel furnace	96
Gronwall steel furnace	101
Gin steel furnace	105
Girod steel furnace	106
II. Production of pig-iron from iron ore, carbon and fluxes	107
Heroult ore-smelting furnace	108
Keller ore-smelting furnace	111
Harmet ore-smelting furnace	113
Haanel-Heroult furnace	115
Turnbull-Heroult furnace	117
Plants for the electric smelting of iron ores	120
Possibilities in the electric smelting or iron ores	121
III. Direct production of steel from iron ore	120
Stassano steel furnace	129
Elimination of sulphur and phosphorus	132
Conclusion	125

CONTENTS.

CHAPTER VI.

Other Uses of the Electric Furnace.

I.	The ferro-alloys	136
	Analyses of ferro-alloys	139
II.	Graphite and the carbides	142
222	Graphite	142
	Kryptol	149
	Carborundum	140
	Siloxicon	153
	Calcium carbide	154
111.	Electrothermic production of zinc	155
	Cowles zinc furnace	157
	Johnson zinc furnace	157
	Laval zinc furnace	150
	Salgues zinc furnace	160
	Conditions for obtaining liquid zinc	162
	Experimental zinc furnace	164
	Snyder zinc process	165
	Snyder zinc furnaces	167
	Electrical energy required for zinc smelting	170
IV	Miscellaneous uses of the electric furnace	171
	Silicon	171
	Fused quartz	172
	Glass	172
	Alundum	173
	Nitric acid	173
	Phosphorus	174
	Carbon bisulphide	174
12	Plus at at	22314
٧.	Electrolytic processes	174
	Electrolysis	174
	Acker caustic soda process	177
	Castner sodium process	179
	Ashcroft sodium process	181
	Swinburne and Ashcroft chlorine-smelting process	184
	Aluminium	185

CHAPTER VII.

Future Developments of the Electric Furnace,

General considerations	189
Exhaustion of coal supplies	100
Utilization of water-powers	101
Achievements of the electric furnace	191
Probable uses of the electric furnace in the future	192
Other sources of electric power	194
Achievements of the electric furnace Probable uses of the electric furnace in the future Other sources of electric power	102