THE STRENGTH OF MATERIALS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649714551

The Strength of Materials by J. A. Ewing

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

J. A. EWING

THE STRENGTH OF MATERIALS

Trieste

THE

10.00

. .

3

10

12

STRENGTH OF MATERIALS

CAMBRIDGE UNIVERSITY PRESS WAREHOUSE, C. F. CLAY, MANAGER. - Hondon: FETTER LANE, E.C. Slasgow: 50, WELLINGTON STREET.

Leipig: F. A. BROCKHAUS. Sein Bork: THE MACMILLAN COMPANY. Bombag and Culcutta: MACMILLAN & CO. LTD.

[All Rights reserved.]

THE

STRENGTH OF MATERIALS

BY

J. A. EWING, M.A., LL.D., F.R.S., M.INST.C.E. DIRECTOR OF NAVAL EDUCATION.

23

SECOND EDITION

CAMBRIDGE AT THE UNIVERSITY PRESS 1906 52 C

.

First Edition 1899. Second Edition 1908, Reprinted 1906.

32

.

83

Cambridge :

PRINTED BY JOHN CLAY, M.A. AT THE UNIVERSITY PRESS.

PREFACE TO THE FIRST EDITION.

IN modern schools of Engineering a student acquires his knowledge of the Strength of Materials and of its application in design, partly by hearing lectures, partly by making experiments in the laboratory, and partly by working out examples in the drawing-office. The present treatise is an attempt to set forth briefly a lecture-room treatment of the subject, which to be effective must be supplemented by laboratory and drawing-office work. Indications are also given of some laboratory experiments in elasticity, and a number of pieces of apparatus are described which have proved serviceable at Cambridge.

I am indebted to Messrs A. and C. Black for permission to use the substance of the article "Strength of Materials" which I wrote for the Ninth Edition of the *Encyclopaedia Britannica*. Also to Professor Unwin, and his publishers Messrs Longmans, for the illustrations on page 77, which are taken from his valuable Treatise on the Testing of Materials. To Mr T. Peel of Magdalene College I owe much for his kindness and care in reading the proofs of these sheets.

J. A. EWING.

Engineering Laboratory, Cambridge. October, 1899.

85.

12

CONTENTS.

•

20

CHAPTER I.

STRESS AND STRAIN.

ABT.											PAGE
1.	Introductory .	10 S	- N	6.0	.	÷.	22	1.0	12		1
2.	Stress	$i \in \mathcal{R}$		2451	£57	(4)	312	÷.	12	\mathbf{x}	2
3.	State of Stress	e = x	- 98 - 1		302	$\overline{\mathcal{M}}$	24	100	90		2
4.	Condition of Equ	ilibriur	n.	62			5.00	• 2		30	2
5.	Distribution of St	ress.	Intensi	ity of	Stre	89			-		3
6.	Normal and Tang	ential	Stress	3	1000	10.0	82	1	8	11	3
7.	State of Simple I	ush o	r Pull	347	39	i.	64	10	(e)	64	4
8.	Complex states of	Stress	s. Prin	cipal	Stre	-	35	100			4
9.	Character of the	Stress	in Sim	ple P	ush o	or Pi	all		*		5
10.	Combination of t	wo sim	ple pul	ll or	push	stre	13866	in din	rectio	- TIS	
	at right any						0	0.0000 20			6
11.	State of Simple S	bear .					124		12	34	7
12.	Equality of Shear			two	direc	tious	689	10	.	- 22	9
13.	Fluid Stress .		6 IS 4				5.	•			10
14.	Strain .		2 - 192 1 - 194		÷.				30 940		10
15.	Elastic Strain and	i Pern	anent	Set.	Limi	ts of	Ela	sticity	· .	2	10
16.	Hooke's Law .				1000			19950		90	11
17.	Young's Modulus	or the	Streto	h Mo	dulus	s .	33	10	33	32	12
18.	Ratio of Lateral						al I	Exten	sion	in	
	Simple Pull			•1				•••			12
19.	Strain produced		earing	Stres	s. M	odul	us of	Rig	idity	or	
	Shear Modu			e en ger	지금적						13
20.	Modulus of Cubic	Com	ressibil	ity of	r Bul	k M	odulu	. 8		- - -	13
21.	Relation between							40			14
22.	Work done in pr							ence			14
		1000	R	0.02.0	10000000	SV65 5	10-00-0	1000	1.11	- 68	