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A Geometrie Almorithm for Solving

the General Linear Prosramming Problem

81. Intrbduction

The development of the subject of linear programming has
centered to a large extent on the problem of maximizing (or mi-
nimizing) a linear form the variables of which are subject to
linear inequalities or constraints., There have been proposed
many procedures for carrying out suech meximizations in an efl-
fective way, foremost of which 1s the simplex method of G, Dant-
zigs All of these methods have the objecticnable feature that
on occasion the number of steps required, though finitec, be-
comes excessively large. Becausze of this (and in the absence
of any alternative) the attitude assumed by many workers in the
field is that a large collection of methods should be evolved
in the hope that on all occasions at least one of them will
prove practicable, In this spirit, a method is proposed in
this paper which is essentially a "gradient" procedure, and yet
has the added feature of concluding in a finite number of steps.
In some problems it worlis more "efficiently" than the simplex
method as a consequence of the fact that instead of moving be-
tween neighboring vertices of the polyhedron of "feasible solu=-
tions" (as in the simplex method) it provides for moving across

faces of this polyhedron,






82, The linear programming problem, Let:

En denote euclidean n-space;
A denote an mxn matrix with rows Hl,...,Rm;
b

It

(by,+es,b ) be an m=dimensional (column) vector;
ll 'm r

p = (pl,...,pn) be an n=-dimensional (row) vector.

Then the general linear programming problem may be stated
as follows:

Find x¢& En such that x maximizes
L(X) = psX = plxl+“'+pnxn I

subject to the constraints
Ax Pt b .
(Note: The non-negativeness of the xi'a need not be among the

constraints.)

83, Further notation and its ceometrical sirnificance,.

Lets

|2| denote the length of a vector x E 3

D=[x|x€En and A::zb}; ‘

¥ = lexé D and L(x) > L{u) for all u€ D: 1.
The following is well lmown and easily verifiedﬁ

Theorem 1, D and D* are cloged and convex,

If x(iD%, then we call x a solutlon to our problem. If

X&D, then we call x a feasible solution.







i
Let A be an rxn submatrix of A whose rows are Ri ,...,l'ti .
1 r
Corresponding to this submatrix, let:

Al
b be the (column) vector (bi ,...,b1 )
1 by

Al il b
F=1Lxlx€D and Ax = h};
| o

v =Ex|xEEn and Ax = o};
s

be the projection of p on V;

pe3/Ip| L£ 5 # 0

0 iIfrp=0

ke
I

(Hote: We allow r = 0, in which case ; =D $'= E E,= p, and
9= lpl.)

Before launching our discussion of the algorithm, which
will be presented in a completely algebralc context, it will be
worthwhile to give geometric meaning to the symbols above, and
to give a geometric description of the algerithm. For it 1s
the geometry that motivates the method, and by interpreting our
results geometrically at each stage of the discussion, the rea-
der should have no trouble following along.

As it is well kmown, D is the intersection of halfspaces,
and therefore a polyhedron (which may be bounded, unbounded or
even empty)s Then we may interpret Ejas being a face of this
polyhedron (which may be empty). HNow suppose we have a point
xED, For this x, L(x) has some value. Then what we would
like to do, is to find a point yE€D such that L(y) > L{x).
Furthermore, it would seem plausible, in moving from x to y, to
do so in a manner that changes L(x) as much as possible for

each unit of distance we meove. Then of course, this directlon



