ELEMENTS OF DYNAMIC; AN INTRODUCTION TO THE STUDY OF MOTION AND REST IN SOLID AND FLUID BODIES; PART I: KINEMATIK

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649571413

Elements of Dynamic; An Introduction to the Study of Motion and Rest in Solid and Fluid Bodies; Part I: Kinematik by W. K. Clifford

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

W. K. CLIFFORD

ELEMENTS OF DYNAMIC; AN INTRODUCTION TO THE STUDY OF MOTION AND REST IN SOLID AND FLUID BODIES; PART I: KINEMATIK

ELEMENTS OF DYNAMIC

AN INTRODUCTION TO THE STUDY OF

MOTION AND REST

IN SOLID AND FLUID BODIES

illiam Kingdon W. K. CLIFFORD F.R.S.

LATE FELLOW AND ASSISTANT TUTOR OF TRINITY COLLEGE, CAMBRIDGE;
PROPESSON OF APPLIED MATERNATICS AND MECHANICS AT
UNIVERSITY COLLEGE, LONDON.

PART I. KINEMATIC. Book 1.-ili.

MACMILLAN AND CO.
1878

[All Rights reserved.]

Phys 848.78

В

From

the Estate of George Eastwood, 4 Feb., 1887.

> Causindge; printed by c. J. Clay, M.A. at the university press.

CONTENTS.

BOOK I. TRANSLATIONS.

	CHA	PT	ER	1. 8	TEP	S.				
8							3			PAGE
Introduction	5.4							٠		1
On Steps		+	37	•					99	3
Composition of Steps	. Geo	met	7.	4		*	0.6	33 .	330	4
Composition of Steps	. Alge	bra	00	0.0	560	3.5	125	65		7
Resolution and Descr	iption	of B	teps							11
Representation of Mo		-			100		(8)	36		14
Uniform Motion .	20	40	40	367	0.0	:00	334	5.4	0.05	15
Uniform Rectilinear	Motion	•11		40				1		16
Uniform Circular Mo	tion		- 27			1		4		18
Harmonic Motion .				363		30	2.4	319	5000	20
On Projection .	0.00	*0	93	36	500	100		55.7	19.00	24
Properties of the Elli		200	- 6			÷		3		27
Elliptic Harmonic M		3.0	- 10	- 88			3.2	300	4	31
Compound Harmonic		n	200		290	100	334	33	60.00	33
Parabolic Motion .	. 2		- <u>*</u>	*		15	ř	•	•	88
C	НАРТ	ER	II.	VE	LOCI	TIE	8.			
The Direction of Mot	ion. (Tan	gents	.) .	:	2.8		•	9000	41
Exact Definition of T	Cangent		98		0.00	o t				44
Velocity. Uniform	• 7									47
Velocity. Variable				4		2.6				51
Exact Definition of V	elocity	¥2	*9		250	0.8	30	N Desi		56
Composition of Veloc	ities		150	100		14				59
Pluxions		117		4	3			(4)	. 3	62
Derived Functions		143			84	109	10	1300	63.	64
Hodograph. Acceler	ation			2.0	2.0	12				67
The Townson Mathed					715	102		333	200	68

CONTENTS.

										PAGE
Curvature	30	200	38	686	2 ÷	200	(0.00)	0.00	20	78
Tangential and Norms	d Ac	elerat	ion							77
Logarithmic Motion		•		2				-	23	78
On Series	301	340	€.	2.	+	239	S.	900	**	81
Exponential Series					127			• 10		88
The Logarithmic Spira	al .		Ş.,							85
Quasi-Harmonic Motic		а Нуј	erbo	Ia.	33	7.00		6 3	*	89
		100	4							
CHAP	rer	III.	CE	NTB	AL	OR	BITS	5.		
The Theorem of Mom	enta	- 1			1			1	2	92
Product of two Vectors	١.		30		113	0.0				94
Moment of Velocity of	a Me	ving	Point	١.	274	234	1000	*::	90	96
Related Curves .	•			0.00	214	0.00	1-600		•	100
Acceleration Inversely			of D	istane	e	100	80	100	- 83	105
Elliptic Motion .						33			20	107
Lambert's Theorem	40			120	: ·	84	0.00	- 60	•0	
General Theorems. I	ha A	OTTOTO	Val	horite		22		511	1.00	***
General Theorems.						3				444
Equation between z az	The second second					22	1740	200		
redemment nesseen a se	Jul 0		Ç.	3.75	Júž	6.5	530		*."	110
							31			
					20					
BC	ок	II.	P	OTA	тт	ONS	1			
200	/OJK	0.00	1.00	~	-	0111	Č.			
		CHA	PT.	ER 1						
Steps of a Rigid Body	25	*		3.4	332	13	(%)	8	¥3	118
200							4			
CHAPT	ER	TT :	VEL	OCI'	rv.s	ZVST	TOMS	2		
0,,,,,		3500					*****	•		
Spine	•	37			22	1.2	: 12	0.00	100	122
Composition of Spins		28				1				123
Velocity-Systems. Ty	vista		96		990	98	34		7.	125
Composition of Twists	•33	.93	83	260		1008	113	201		126
Momenta							32			182
Instantaneous motion	of a	Bigid :	Body					1		136
Curvature of Roulette	¥1:				+	376	73		1000	
Instantaneous Axia	1	20 20	•			100	38	007	2000	
Degree of Freedom			8	(ii)		9				143
Involute and Evolute	01		22	325	98	81	3	5		144
			200		*	(90)	5.40			111

			٠
•	٠		
٠,	r	т	

CONTENTS.

CHAPTER	III.	SPI	ECIA	L P	ROE	LEN	(S		
									PAG
	8 8	(8)	3.0						14
	9 15		200	28	31.5	33.00	100	50	15
Double Generation of Cy	cloidal	Curve	. 186		1/4				15
Case of Badu as 1:2					3.5		2.0		15
Envelop of Carried Roule	itte .	*	3.5	35	¥	(0)	(*)	F.	15
ВО	oĸ	ш.	ST	RAI	NS.	ĐX			
• CHAP	TER	I. S	TRA	IN-S	TE	PS.			
Strain in Straight Line .	6 30		12		804	99	-	(3)	15
Homogeneous Strain in I	Plane	-		5.00		42	60	•	-22
Representation of Pure S					빏	100			**
Representation of the Dis					ä		(1)		17.0
Linear Function of a Vec			(6)				336		2.2
Properties of a Pure Fund	ction			25	24		3.0	i ez	
Shear		17					1		
Composition of Strains .	e 80	7.0			18				4.4
Representation of Strains				30	88.	9.			
General Strain of Solid.						22		100	10
Representation of Pure 8							10		17
Properties of Hyperboloid					10		306		17
Displacement Quadric .	o •o	201	(8)		200	*		13	
Linear Function of a Vec	tor .			·			18/0		18
Varying Strain		٠	٩	•			8		18
CHAPTER	ı II.	STR	AIN-	vei	oci	TIE	s.		
Homogeneous Strain-Flux		60	20	140		30	243	554	19
Circulation			40	90	**		0.00	67.	194
Strain-Flux not Homogen					•		8		19
Lines of Flow and Vortex		01 20:	- 2	į.	9		3		199

Circulation in Non-Homogeneous Strain-Flux . . .

viii

CONTENTS.

															PAGE
Irrotati	ona	1 Mc	tion	1		63	90	36	×	:0		×	69		203
Equipo	tent	ial f	orf	ace	Comme	•03	*2	363		383		*	126	500	204
Motion	par	tly l	rrol	ati	lamo										205
Expans	ion				•			2			.0		35%	33	207
Case of	No	Ex	ane	ion		0.00	900	*:	œ:				7.6		210
Squirts															212
Whirls						- 6	•					ļ			214
Vortice	в.	334		•	13400	433	43	**	30				174		216
Velocity	y in	Ter	ms	of I	Expan	sion	and S	5pin					110		219

BOOK I. TRANSLATIONS.

CHAPTER L STEPS.

INTRODUCTION.

JUST as Geometry teaches us about the sizes and shapes and distances of bodies, and about the relations which hold good between them, so Dynamic teaches us about the changes which take place in those distances, sizes, and shapes (which changes are called motions), the relations which hold good between different motions, and the circumstances under which motions take place.

Motions are generally very complicated. To fix the ideas, consider the case of a man sitting in one corner of a railway carriage, who gets up and moves to the opposite corner. He has gone from one place to another; he has turned round; he has continually changed in shape, and many of his muscles have changed in size during the

process.

To avoid this complication we deal with the simplest motions first, and gradually go on to consider the more complex ones. In the first place we postpone the consideration of changes in size and shape by treating only of those motions in which there are no such changes. A body which does not change its size or shape during the time considered is called a rigid body.

The motion of rigid bodies is of two kinds; change of place, or translation, and change of direction or aspect, which is called rotation. In a motion of pure translation, every straight line in the body remains parallel to its original position; for if it did not, it would turn round,