A TREATISE ON THE MOTION OF VORTEX RINGS: AN ESSAY TO WHICH THE ADAMS PRIZE WAS ADJUDGED IN 1882, IN THE UNIVERSITY OF CAMBRIDGE

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649503391

A Treatise on the Motion of Vortex Rings: An Essay to Which the Adams Prize Was Adjudged in 1882, in the University of Cambridge by J. J. Thomson

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

A TREATISE ON THE MOTION OF VORTEX RINGS: AN ESSAY TO WHICH THE ADAMS PRIZE WAS ADJUDGED IN 1882, IN THE UNIVERSITY OF CAMBRIDGE

Trieste

A TREATISE

376

58

.

÷.

ON THE

MOTION OF VORTEX RINGS.

A TREATISE

ON THE

MOTION OF VORTEX RINGS.

AN ESSAY TO WHICH THE ADAMS PRIZE WAS ADJUDGED IN 1882, IN THE UNIVERSITY OF CAMBRIDGE.

BY

J. J. THOMSON, M.A.

FELLOW AND ASSISTANT LECTURES. OF TRINITY COLLEGE, CAMBRIDGE.

London: MACMILLAN AND CO. 1883

[The Right of Translation and Reproduction is reserved.]

a contraction of the second second

14 ₅₆

* *

jā.

0 16 18

82 42

PREFACE.

THE subject selected by the Examiners for the Adams Prize for 1882 was

"A general investigation of the action upon each other of two closed vortices in a perfect incompressible fluid."

In this essay, in addition to the set subject, I have discussed some points which are intimately connected with it, and I have endeavoured to apply some of the results to the vortex atom theory of matter.

I have made some alterations in the notation and arrangement since the essay was sent in to the Examiners, in so doing I have received great assistance from Prof. G. H. Darwin, F.R.S. one of the Examiners, who very kindly lent me the notes he had made on the essay. Beyond these I have not made any alterations in the first three parts of the essay: but to the fourth part, which treats of a vortex atom theory of chemical action, I have made some additions in the hope of making the theory more complete : paragraph 60 and parts of paragraphs 58 and 59 have been added since the essay was sent in to the Examiners.

I am very much indebted to Prof. Larmor of Queen's College, Galway, for a careful revision of the proofs and for many valuable suggestions.

J. J. THOMSON.

TRINITY COLLEGE, CAMBBIDGE. October 1st, 1883.

b

T.

.

7.1

CONTENTS.

PAGE INTRODUCTION . ix . PART I. PARAGRAPH § 4. Momentum of a system of circular vortex rings § 5. Moment of momentum of the system . . . 8 . . 6 . . . § 6. Kinetic energy of the system § 7. Expression for the kinetic energy of a number of circular vortex 8 rings moving inside a closed vessel . . . 11 . . . 8. Theory of the single vortex ring 9. Expression for the velocity parallel to the axis of x due to an approxi-18 mately circular vortex ring 15 § 10. The velocity parallel to the axis of y . 18 § 11. The velocity parallel to the axis of z 20 • • • x . . § 12. Calculation of the coefficients in the expansion of 1 (1+a³-2a cos θ)

	in the form A	0+A1	COB	+ 4 9	008 26	****	100			30		22
\$ 13.	Calculation of the	perio	ds of	vibra	tion	of th	e app	proxin	natel	y circ	ular	
	vortex ring											29

PART II.

\$ 14.	The action of two vortex rings on each other	87
\$ 15.	The expression for the velocity parallel to the axis of x due to one	
200000	vortex at a point on the core of the other	89
\$ 16.	The velocity parallel to the axis of y	40
\$ 17.	The velocity parallel to the axis of z	40
\$ 20.	The velocity parallel to the axis of z expressed as a function of the	
5	time	41
\$ 21.	The similar expression for the velocity parallel to the axis of y	48
\$ 22.	The similar expression for the velocity parallel to the axis of x .	44
\$ 23.)		
\$ 24.	The expression for the deflection of one of the vortex rings	46
\$ 25.	y na vene en elemente de la constante de la con Constante de la constante de la constant ^{e de} la constante de la constante de la constante de la constante de la	
\$ 26.	The change in the radius of the vortex ring	50
\$ 27.	The changes in the components of the momentum	52
\$ 28.)		
\$ 29.	Effects of the collision on the sizes and directions of motion of the	
\$ 30.	two vortices	54
\$ 31.)		
0500000	b 2	

.

CONTENTS.

FARAGRAPH 8 S2.	The impulses which would produce the same effect as the collision	FA08
\$ 38.)	The effect of the collision upon the shape of the vortex ring: calcu-	
\$ 84.1	lation of	
#49423300	$\int_{-\infty}^{+\infty} \frac{\cos nt \cdot dt}{(c^2 + k^2 c^2)^{\frac{1}{2}(2p+1)}} \cdot \cdot \cdot \cdot$. 56
§ 35.	Summary of the effects of the collision on the vortex rings .	62
\$ 86.	Motion of a circular vortex ring in a fluid throughout which the dis	
	tribution of velocity is known	68
§ 37.) § 38.1	Motion of a circular vortex ring past a fixed sphere	67

PABT III.

\$ 89.	The velocity potential d	ue to	and th	be vil	bratio	ns of	f an a	ppro	timate	ely		
	circular vortex colu	mn				•	• •				71	
\$ 40.	Velocity potential due to	o two	vorte	x col	umns						74	
\$ 41.	Trigonometrical Lemma				• 2	•	10	•			75	
\$ 49.	Action of two vortex col	umna	upor	a eacl	h othe	r	•				75	
\$ 42*.	The motion of two links	d vor	tices	of eq	ual st	reng	th				78	
\$ 48.	The motion of two links	d vor	tioes	of un	lagoal	stre	ngth				86	
8 44.	Calculation of the motio	on of	two li	inked	vorti	ces o	fequ	al str	ength	to		
	a higher order of ap										88	1
\$ 45.	Proof that the above sol				y one	for e	ircul	ar vo	rtices		92	
8 46.	Momentum and moment										92	
-8 47.	The motion of several ve										93	
4 48.	The equations giving the							rtex	colum	ns	155	
•	of equal strength is										S.	
	motion									<u>.</u>	94	
\$ 49.	The case when $n=3$	1				- 22	- 53	- 33	2	2	98	
\$ 50.	The case when $n=4$	8	S			1		10	2	3	99	
\$ 51.	The case when $n = 5$								÷.	0	100	
\$ 52.	The case when $n=6$	8					- 53	÷.	~		103	
\$ 53.	The case when $n=7$	8	S.,				- 55	÷.		9	105	
\$ 54.	Mayer's experiments wit	h flou	ating	meor	ota		- C				107	
\$ 55.	Summary of this Part			ALCONG L	10.00	2.0	53		•		107	
3 00.	Domining of sup 18:4	3	9 2			•	<u>80</u>	5 3	10		101	
- R												

PART IV.

\$ 56.	Pressure of a gas. Boyle's law		1.0		1.40	• 2	 109
§ 57.	Thermal effusion		35	100			112
\$ 58.	Sketch of a chemical theory .	8		1.		1	114
\$ 59.	Theory of quantivalence						118
§ 60,	Valency of the various elements				•		121

viii

63

е. – Ч