ELEMENTS OF THE DIFFERENTIAL AND INTEGRAL CALCULUS WITH EXAMPLES AND APPLICATIONS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649571321

Elements of the Differential and Integral Calculus with Examples and Applications by $\,$ James M. Taylor

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

JAMES M. TAYLOR

ELEMENTS OF THE DIFFERENTIAL AND INTEGRAL CALCULUS WITH EXAMPLES AND APPLICATIONS

° ELEMENTS

OF THE

DIFFERENTIAL AND INTEGRAL CALCULUS,

EXAMPLES AND APPLICATIONS.

WITH

BY

JAMES M. TAYLOR,
PROFESSOR OF MATERIATICS, MADISON UNIVERSITY.

BOSTON: PUBLISHED BY GINN & COMPANY. 1886.

Educ 1 188,86,810

Marvard College LIBRARY Mrs. albert Sauveur, Cambridge, July 20,129

Entered according to Act of Congress, in the year 1884, by JAMES M. TAYLOR,

in the Office of the Librarian of Congress, at Washington.

J. S. Cushing & Co., PRINTERS, 115 HIGH STREET, BOSTON.

PREFACE.

THE object of the following treatise is to present simply and concisely the fundamental problems of the Calculus, their solution, and more common applications.

Since variables are its characteristic quantities, the first fundamental problem of the Calculus is, To find the ratio of the rates of change of related variables. To enable the learner most clearly to comprehend this problem, the author has employed the conception of rates, which affords finite differentials and the simplest demonstration of many principles. The problem of Differentiation having been clearly presented, a general method of its solution is obtained by the use of limits. This order of development avoids the use of the indeterminate form $\frac{0}{0}$, and secures all the advantages of the differential notation. Many principles are proved, both by the method of rates and that of limits, and thus each is made to throw light upon the other.

In a final chapter, the method of infinitesimals is briefly presented; its underlying principles having been previously established.

The chapter on Differentiation is followed by one on Integration; and in each, as throughout the work, there are numerous practical problems in Geometry and Mechanics, which serve to exhibit the power and use of the science, and to excite and keep alive the interest of the student.

In writing this treatise, the works of the best American, English, and French authors have been consulted; and from these sources the most of the examples and problems have been obtained.

The author is indebted to Professors J. E. OLIVER and J. McMahon of Cornell University, and Professor O. Root, Jr., of Hamilton College, for valuable suggestions; and to Messrs, J. S. Cushing & Co. for the typographical excellence of the book.

J. M. TAYLOR.

HAMILTON, N.Y., Nov., 1884.

CONTENTS.

CHAPTER I.

	INTRODUCTION.			
Secti				Page.
1.	Definition of variable and constant	٠	٠	
	Definition of function and independent variable			
	Classification of functions			
4.	Definition of continuous variable and continuous function			. 2
5.				
6.	Limits of equal variables			
7.	Limit of the product of a constant and a variable			. 4
	Limit of the product of two or more variables			
9.	Limit of the quotient of two variables			. 4
10.	Limit of the sum of two or more variables	2		. 4
	Definition of uniform change			
	Definition of increment			
	Definition of differential			
	Illustrations of differentials			
15.	Definition of inclination, slope, and tangent			. 7
16.	. Geometric signification of $\frac{dy}{dx}$. 7
17,	Limit of the ratio of the increments of y and x	•	•	. 8
	CHAPTER II.			
	DIFFERENTIATION.			
18.	Definition of differentiation. Differentiation of axs	·		. 10
	Algebraic Functions.			
19.	Differential of the product of a constant and variable		200	. 10
	Differential of a constant		10	. 11
	Differential of the sum of two or more variables		1	. 11
24.	. A THE CHILD OF THE SUM OF TWO OF THOSE TALIABLES	•	•	

	2002

- 4	AT

CONTENTS.

Section	ion.					Page.
22.	Differential of the product of two variables					12
23.	Differential of the product of several variables					13
24.	Differential of a fraction				¥0	14
25.	Differential of a variable with a constant exponent					14
26.	General symbol for the differential of $f(x)$. Example:	s .				15
27.	Definition of an increasing and a decreasing function .					17
28.	Definition of derivative					17
29.	Definition of derivative					18
80.	Signification of $\frac{dy}{dt}$					18
81.	Signification of $f'(x)$ or $\frac{dy}{dx}$			٠	•8	18
32.	Limit of the ratio of Ay to Az. Applications		. G.V			19
	Definition of velocity and acceleration. Examples					23
	Logarithmic and Exponential Functions.					
84.	Differential of a logarithmic function					24
	The greater the base, the smaller the modulus					25
	Naperian system					25
87.						26
38.	Differential of ya	9		1	1	26
	Logarithmic differentiation. Examples					26
	Trigonometric Functions.					
						-
	Definition of the unit of angular measure					29
C 4 1 1 2	Differential of sin x and cos x					29
	Differential of tan x					30
	Differential of cot x					30
	Differential of sec x					30
00000	Differential of cosec x					31
	Differential of vers x					31
47.	Differential of covers x					81
48.	Limit of the ratio of an arc to its chord					31
49.	Differentiation of sin x by the method of limits. Example 2.1	mp	les	•	٠	32
	Anti-Trigonometric Functions.					
	Differential of sin ⁻¹ x					35
51.	Differential of cos ⁻¹ x	٠				85
	Differential of tan-1x					85
	Differential of cot ⁻¹ x					36
54.	Differential of $\sec^{-1}x$	•				36

	CONTENTS.
Sect	ion.
	Differential of cosec 1x
	Differential of vers ⁻¹ x
57.	Differential of covers 1x. Examples
	Miscellaneous examples
	CHAPTER III.
	INTEGRATION.
58.	Definition of integral and integration. Sign of integration
59.	Elementary principles
	Fundamental formulas
61.	Statement of formulas 1 and 2. Examples
	Auxiliary formulas. Examples
	Trigonometric differentials. Examples
64.	Definite integrals. Examples
	Applications to Geometry and Mechanics.
	Rectification of curves. Examples
66.	Areas of plane curves. Examples
	Graphical representation of any integral
	Areas of surfaces of revolution. Examples
	Volumes of solids of revolution. Examples
10.	Fundamental formulas of mechanics. Examples
	 Formulas for uniformly accelerated motion. Motion down an inclined plane.
	Motion down an inclined plane. Motion down a chord of a vertical circle.
	4. Values of v and s when a varies directly as t.
	5. Geometrical representation of the time, velocity, distance,
	and acceleration.
	6. Path of a projectile.
	7. Path, velocity, and acceleration of a body whose velocity
	in each of two directions is given.
	CHAPTER IV.
	SUCCESSIVE DIFFERENTIATION.
71.	Successive derivatives
	Signification of $f''(x)$, $f'''(x)$, $f^a(x)$. Examples
	Successive differentials
74.	Relations between successive differentials and derivatives.
	Examples