THE ESSENTIALS OF CHEMICAL PHYSIOLOGY

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649107315

The essentials of chemical physiology by W. D. Halliburton

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

W. D. HALLIBURTON

THE ESSENTIALS OF CHEMICAL PHYSIOLOGY

alice Pohde.

CHEMICAL PHYSIOLOGY

H 18 1907

PREFACE

TO

THE SIXTH EDITION

I have again subjected the book to a thorough revision, and the changes which are now introduced into the practical exercises are those which experience has shown to be advisable. In the large text it has been necessary to rewrite a good many parts, mainly on account of our increased knowledge of the proteins and of the way they are utilised in the body. The sections relating to blood coagulation and to respiration have been much amplified in order to include many facts which are the result of recent research.

In my endeavour to bring the work abreast of advances in science, and at the same time to keep it within moderate limits, I have to acknowledge help and valuable suggestions from Mr. J. Barcroft, M.A. (especially in connection with Respiration), from Professor T. G. Brodie, F.R.S., and from my two colleagues at King's College, Dr. Lyle and Dr. O. Rosenheim; both of these have been of great assistance to me in reading the proof-sheets, and Dr. Lyle is again responsible for the Index.

W. D. HALLIBURTON.

KING'S COLLEGE, 1907.

CONTENTS

				3.3										PAGE
INTRODU	CTION .	•	•	•	•			8	*		9	8	*	1
			EL	EMF	SNT_2	1R3	Y 0	OUL	287	7				
Lieson					10/200		8 15			50				
I.	Тик Ес	EMENT	s cor	NTAINE	D IN	Рич	ozor	GICAL	Cos	POUN	16.	10	\$	9
H.	THE CA	RBORY	DRATI	ns.	50		(2)	85.	335	(e :	50	86	20	13
iII.	THE FA	TB.	19		63	96	\overline{x}			634	-60	30	*	22
IV.	THE PR	OTEENS		C211	700		(2)	17	0.5	10.7		20	æ.	27
v.	THE PR	OTEINE	(cor	otinue	d)	æ	100		59	3	63	88		29
VI.	Foors				10	ş	8		32	200	1.3	28	07	49
VII.	THE DI	GESTIV	e Jo	ICES-	SALIV	a an	υ G	THIRIT	Di	BESTI	. KC			62
VIII.	THE DE	*ESTIV	e Jei	ска (ы	ontino	ed)-	-Pas	NCREAT	rie I) iges i	10N A	ND B	LE	78
IX.	Tue Br							111	()t	104		201		101
X.	Unine			SEC	46	en Vi	×	(S)	107 506			23	A) 83	141
XI.	URINE (156
XII.	PATHOLO				熱	81 20	20	35			8	50	8	166
					¥°; Namese v	¥:	£.		17# 1040000	- 58 - ** ************	E.	***	300	
1	снеме в	DE DE	TECTI	NG P	HYSIOL	ogic	ar. F	'ROXIM	ATE	Pars	CIPLES		*	171
			A	DVA	NCF	^{2}D	co	URS	E					
INTRODU	CTION .			2 07	**	90	35	38	127	(2)	11	20	20	175
LESSON														
XIII.	CARBOH	VDRATI	8.	40	4.7	Ţ	$\hat{\varphi}$		14	10		23	-	176
XIV.	Астюя	or M	LT U	PON S	TABOR		36	833	0.5	. 190	#8	*3	929	179
xv.	CRYSTAL	AISATI	0N (I)	E E G G	Аци	ORIN	52	82	32	2.63	89	95		180
XVI.	Мик.			+0	e:	.+:	*	85	115		TII			181
XVII.	Тик Ра	OTEOSI	28.	20	60 60						22			182

viii	ESSEN	TIALS	OF	CE	IEM	CAL	PH	YSIC	LOG	Y			
LESSON													PAGE
XVIII.	Digestion .	2 1		÷	*	*:	\$35	(5)		8	85	9	184
XIX.	Hæmoglobin A	ND ITS	DE	SIVA	EIVBS	$\widetilde{\mathcal{M}}$	×		Œ.	100	89		188
XX.	SERUM .				•		35	•	17	33	115	(2)	192
XXI.	COAGULATION O	F BLO	OD		(*)	€.	30	30		36	9	•	194
XXII.	MUSCLE AND N	Envou	s Tr	SSUE	47	20		\mathcal{L}		4	12		197
XXIII.	URBA AND CHI	ORIDES	IN.	Unn	SP.	***	45	35	1	3.7			204
XXIV.	PHOSPHATES AN	n Sul	РН.1 Т	es I	N UR	INE	10	1	57	84	5.		207
XXV.	URIC ACID AND	CREA	TININ	E.	50	50	25		22	88	1000		210
XXVI.	THE PIGMENTS	OF TH	E U	RINE	(3)	¥6	¥9.	Ø.,	S\$	5%			213
								*					
Намасч	TOMETERS .			ST I	JEHN.	DIX							217
		93 () 93 ()		**	81	*83 213	8		33	2			
	LORINOMETERS ATTON OF LIGHT			*	#6 62	*		39 50	*	1.9			222
				1	•	200			62	18	. 23		226
		98 g	,	1	20		÷	*			53:	*0	220
- RESIDENT	ECTRO-POLARIME		<u>.</u>			J.	1		44		1035388	200	
	n between Cib							IICAL.	Gon:		TION		230
	IAL AIR-PUNIES	. 1	20	•	2	0	3	0.2	112	7/21			231
	den das preudos en co		•		į.		\mathcal{H}_{i}	100	37		*		234
KJELDA	нг.'я Метнор оз	Estr	MATE	ca N	ITRO	3EN		3	10	100	50		235
Solution	INS, DIFFUSION,	DIALY	sis, () вмо	sia	15.	12	(*)	3	(5)	53	20	236
INDEX	0 0 0	72 1			20				69	114	141		245

LIST OF ILLUSTRATIONS

F16.	DEXTROSE CRYSTALS									P	PAGE
				*	9	64	122	23	53	Frey	17
2.	INOSITE CRYSTALS		100	•	300	33	0.0	(0)(300	Frey	18
3.	MILK-SUGAR CRYSTALS		42		10	12	84		23	Erey	19
4.	SECTION OF PEA, SHOWI	NG	Starch	G	RAINS	2	100	Ye	o, af	ter Sachs	20
5.	FAT CELLS		100	Ų.	9	îï	141	25	20	Schäfer	23
6.	SIMPLE WARM BATH	:::	12	35	225	(5)	**	88	37	* *	29
7.	DIALYSER		30	19	26	83	23	(4)	(4)	6 33	37
8.	DIALYBER	(2)	672		500	-	80	2.0	3	98 98	37
9.	DIAGRAM OF A CELL	•		3	99	-	90	*	90	Schäfer	45
10.	Мик	9	82	1	-33	8	7		17	- Yeo	53
11.	COLOSTRUM CORPUSCIES		136.1	100	86	(6)	1		He	idenhain	53
12.	YEAST CELLS	9	54			4	2	Yeo	's P	hysiology	63
13.	SCHIZOMYCETES .		0.5	•	10	*0	**	(#)	A	fter Zopf	64
14.	BACILLUS ANTHRACIS	$\overline{\mathfrak{g}}$	394	ű	165	100	4	343		Koch	65
15.	ALVEOLI OF SEROUS GI	AN	D.	700	50	25	120	25		Langley	69
16.	Mucous Cells .		1)(4)		*	(4)	(3)	39	Œ	Langley	69
17.	SUBMAXILLARY GLAND	12	522	72.		28			He	idenhain	69
18.	FUNDUS GLAND .					83	75	*		Klein	71
19.	PYLORIC GLAND .		17	5	- 23	¥3	(i)	100	12	Ebstein	71
20.	FUNDUS GLAND .		22		320	100	800	*	(+);	Langley	72
21.	ALVEOLUS OF PANCHEAS			œ	84	83	£0	Ki	line	and Lea	80
22.	LEUCINE CRYSTALS .				- 5	20	27	t:	**	Kuhne	86
23.	TYROSINE CRYSTALS .	3.8	9		63	73	90	4	-	Frey	86
24.	HEMATOIDIN CHYSTALS	102	10.7	3	27	46		33	05	Frey	89
25.	CHOLESTERIN CRYSTALS				v.c	-	-	+22		Even	92

26.	VILLUS OF RAT KILLED DURIN	g I	ar A	BSOR	PTION	œ		34	Schäfer	PAGE 98
27.	Mucous Membrane of Fuog's	Īĸ	TEKT	SE DI	DRING	Fa	T		V. (17.11.20 #2717.	
	Absorption			8 ³			15	¥	Schäfer	99
28.	FIBRIN FILAMENTS AND BLOOD	Pr	ATELI	TS	10	80	30		Schäfer	103
29.	Action of Reagents on Broo	n (Corpu	SCLES	1000	(1)	4.5		Schäfer	111
30.	Oxynemoglobin Crystals		į e		70	*	Quai	n's .	1natomy	112
31.	Hamin Crystals .	0	2	63	100	93		-	Preyer	113
32.	DIAGRAM OF SPECTROSCOPE	-	74	6			100 100			116
33.	FIGURE OF SPECTROSCOPE AND	Ac	CERSO	ILIES	*:	*		Me	Kendrick	116
34.	ARRANGEMENT OF PRIBES IN I	Этві	ECT-V1	KON	8 гест	ROS	COPE	G	scheidlen	117
35.	STAND FOR DIRECT-VISION SPE	CIR	oscor)	с.	*:	*	*	(4)	(8 (X	118
36.	Absorption Spectra . '		ŝŧ	3	10	8	1		Rollett	118
37.	Absorption Spectra .	2	50	100	20	80		0.40	24	119
38.	LOEWY'S AEROTONOMETER		3(4)5	-	*2	93	80		54 E4	132
39.	DISSOCIATION CURVES OF BLOO	10 3	no H	жие	GLOBIS	Ŕ	413		Bohr	133
40.	BARCROFT'S BLOOD GAS APPAR	AT	28	T.	40	90	3	33		135
41.	Dupré's Urea Apparatus		50		157	3	102		Gamgee	142
43.	Umnometer	60 80	56	100	33	19	100	Mc	Kendrick	144
43.	UREA CRYSTALE		211		72		17	100	Frey	144
44.	UREA NITHATE AND OXAGATE	•	45,	-27	+	96		200	Frey	146
45.	TRIPLE PHOSPHATE CRYSTALS		83	100			14	39	Frey	155
46.	URIC ACID CRYSTALS .	100	25	20	100		0.00	12.5	Frey	157
47.	ACID SODIUM URATE .	٠		85	30		88	03	Frey	163
48.	ACID AMMONIUM URATE .	4	87	10	40	*	30	9	Frey	163
49.	ENVELOPE CRYSTALS OF CALCU	Car	OXAL	ATE	*			08	Frey	164
50.	CYSTIN CRYSTALS		217	7	4	Q.	.00	74	Frey	164
51.	TRIPLE PHOSPHATE CRYSTALS	23	2.0	30	*	×	Brye	int's	Surgery	164
52.	CALCIUM PHOSPHATE CRYSTALS	4	63	Ž.	žč.	8	Bry	ent's	Surgery	164
53.	ALBUMINOMETER OF ESBACH	+ 1	200	to.	365	986	18		200 100 200 100	166
54.	Two Burettes on Stand		433	ŧ.		3	14	100	Sutton	167
55.	HOT-AIR OVEN WITH GAS REC	ICI.	ATOB	·**				G	scheidlen	176
56.	OSAZONE CRYSTALS	(i)	10	30	200	Co	loure	l ple	te to face	177
57.	ABSORPTION SPECTRA OF HEM	1001	OBIN,	фc.	1	(4)	9	Ţ,	٠.	189
58.	Риотоовариис Ѕрествем от 1	HE	Mogro	BIN /	ND O.	CYH.	ENOG	LOBIN	Gamgee	190

LIST OF ILLUSTRATIONS

FIG. 59.	Photographic Spectrum of Oxynamoglobis	e ser	Mon	m wwo		PAGE
00.	GLOBIN		, Darki	1.36340-	Gamgee	190
60.	CENTRIFUGAL MACHINE	30. 20	30	30 30 30 33	Tel e	195
61.	ABSORPTION SPECTRA OF MYOHEMATIN .				4	199
62.	A DESICCATOR	900 800	*		scheidlen	199
63.	ABSORPTION SPECTRA OF URINARY PIGMENTS			. After	Hopkins	215
64.	Gowers' Hamacytometer	200			- 150 - 140 - 140	217
65.	OLIVER'S HEMACYTOMETER	20 V		91 192 43 94	14 1000 14 1000	218
66.	Gowers' Hæmoglobinometer					219
67.	Von Fleischl's Hænometer	80 80		7), 45 44 44	25 US	220
68.	OLIVER'S HEMOGLOBINOMETER	20 20			S 15	221
69.	Model to Illustrate Polarised Light		#C	65 6 90		223
70.	MODEL TO ILLUSTRATE POLARISED LAGHT			9 19	G 3	223
71.	MODEL TO ILLUSTRATE POLARISED LIGHT					224
72.	DIAGRAM TO EXPLAIN POLARISATION OF LIGHT	n.		5 5 4 54	37 S.S.	225
73.	DIAGRAM TO EXPLAIN POLARISATION OF LIGHT					226
74.	Soleu's Saccharimeter	ē.	20	n (3	35 105	227
75.	DIAGRAM OF OPTICAL ARRANGEMENTS IN SOL	ent's	Sacer		TI	227
76.	LAURENT'S POLARIMETER	*3				228
77.	SPECTRO-POLARIMETER OF VON FLEISCHL.	50 20	× :	a	3 3	229
78.	Diagram of Asymmetric Carison Atoms					231
79.	Diagram of Pylüger's Pump	8	81 100			232
80.	L. Hill's Am-pump	50 56	50 I		72 53	233
81.	Waller's Apparatus for Gas Analysis	7)	8	Å S	Waller	234
82.	KJELDAHL'S METHOD, DISTILLING APPARATUS	(E)	8 1	* 3*	Tr tieter	235
83.	D					
000	DIAGRAM TO HILUSTRATE USHOSIS	4	300	(A) 27.6	100 (000)	239