ELEMENTS OF DYNAMIC; AN INTRODUCTION TO THE STUDY OF MOTION AND REST IN SOLID AND FLUID BODIES. PART I. KINEMATIC

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649100293

Elements of dynamic; an introduction to the study of motion and rest in solid and fluid bodies. Part I. Kinematic by W. K. Clifford

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

W. K. CLIFFORD

ELEMENTS OF DYNAMIC; AN INTRODUCTION TO THE STUDY OF MOTION AND REST IN SOLID AND FLUID BODIES. PART I. KINEMATIC

Trieste

ELEMENTS OF DYNAMIC.

ELEMENTS OF DYNAMIC

AN INTRODUCTION TO THE STUDY OF

MOTION AND REST

IN SOLID AND FLUID BODIES

BY

W. K. CLIFFORD, F.R.S.

LATE FELLOW AND ASSISTANT TUTOR OF TRINITY COLLEGE, CAMBRIDGE; PROFESSOR OF APPLIED MATHEMATICS AND MECHANICS AT UNIVERSITY COLLEGE, LONDON.

PART I. KINEMATIC.

London: MACMILLAN AND CO. 1878

[All Rights reserved.]

Cambridge: PRINTED BY C. J. CLAY, M.A.

AT THE UNIVERSITY PRESS.

C6D V.1

CONTENTS.

BOOK I. TRANSLATIONS.

CHAPTER L STEPS,

									PAGE
Introduction	10	42	\sim	372	19		1.4		1
On Steps									3
Composition of Steps. Geo	met	y .	1	1			12		4
Composition of Steps. Alg	ebra	1	31	1	-	- 14	12		7
Resolution and Description		еря	- G.						11
Representation of Motion			1	- Q	<u>_</u>	- 12	18	12	14
Uniform Motion	10	1	-		14	12			15
Uniform Rectilinear Motion	1.		- 20	÷	- 20				16
Uniform Circular Motion					1	1			18
Harmonic Motion	- 31	- 21	- 8	- 2	12	- C	- S.	- Q.	20
On Projection	- 20	87		47					24
Properties of the Ellipse									27
Elliptic Harmonic Motion	12	- 11	- 33		- 22	- 19 -	19		31
Compound Harmonie Motio	n	10	42	а.	1.1	141	÷.		33
Parabolic Motion .	Ĩ.				- A.				38
APPENDIX AND A REPORT MACHINE CONTROL OF A									CALC ALC:

CHAPTER II. VELOCITIES.

The Directi	on of Mot	ion. (l'ang	(ents.)	42	(e)		(¥)			41
Exact Defin	ition of T	angent	10	+1	*21	+0					44
Velocity.	Uniform			2	2	- S	- 2	2	1	1	47
Velocity.	Variable			10	*				\sim		51
Exact Defin	ition of V	elocity	1072	+5	40	40	100				56
Composition	n of Veloc	ities		- 11	2	12	- ÷	1	÷.	1.	59
Fluxions		1.	-	÷.	÷.	- 60 -	- 14 -	- 66		- 22	62
Derived Fur	nctions	10	410	•0	*/	+ 2	10				64
Hodograph.	Accelera	ation		10							67
The Inverse	Method		2	- 12	12	1	12	- Q.		- Q.	68

CONTENTS.

											PAGE
Curvature .	181	10	÷1.,	. ¥	- 23	12	- 23	14	14	14	73
Tangential and N	forma	I Ace	elera	tion	*	14					77
Logarithmic Mot	ion			×-			+				78
On Series .		- 21		1	1	1	. *		- 64	14	81
Exponential Seri	es	1		10		140	14	(\mathbf{r})			83
The Logarithmic	Spira	il.	+1			80	\sim			18	85
Quasi-Harmonic	Motio	n in	a Hy	perbo	In	<u></u>	- 12 -	1	- G	1.	89

CHAPTER III. CENTRAL ORBITS.

The Theorem of Mome	ents	+11		+	+2	100		141		92
Product of two Vectors	۱.		. 8				- Gi	14	1	94
Moment of Velocity of	a M	loving	Point	t	- Q2	46		18	14	96
Related Curves .			*1		36		(\pm)	78		100
Acceleration Inversely	as \$	Square	of D	istan	ee:			4		105
Elliptic Motion .	- 25			- 100 A	÷.	Q.,	4	1		107
Lambert's Theorem		*	87	10	*	÷.				108
General Theorems. I	he l	Square	d Vel	locity				+	+	110
General Theorems, 7	The	Critica	1 Orb	it	: 않	- 12				113
Equation between u an	nd Ø	181	10	1	÷. •	(a)				116

BOOK II. ROTATIONS.

CHAPTER I.

Steps of a Rigid Body .	s - 6		- 20	· · · ·	10				118
-------------------------	-------	--	------	---------	----	--	--	--	-----

CHAPTER II. VELOCITY-SYSTEMS.

Spins	14	122	17	- 😳	23	- 55	- 20	- 46	121	122
Composition of Spins	0.00	6.3	+	87	- AC		- 92	14		123
Velocity-Systems. Ty	vists	12	+:-	15		+:-				125
Composition of Twists		1	- 21	- 11	1	- 22	12	12		126
Moments	10			*	- 42	- G				132
Instantaneous motion	of a	Rigid	Body	· .	+C		+			136
Curvature of Roulctte		1		1	- 20	12	1			140
Instantaneous Axis	140	2.1	12	÷.	- 22	121	12	12	11	141
Degree of Freedom		+3	¥0;	10		*	41		4	143
Involute and Evolute		4				+				144

CONTENTS.

CHAPTER III. SPECIAL PROBLEMS.

										PADE
Three-Bar Motion .	÷.	14	- 14	14	- 35	-	18	43	- 23	146
Circular Roulettes		28				1.00		±);		151
Double Generation of (Cycloi	dal	Curves	ä.	÷.,					152
Case of Radii as 1 : 2				4	21	243	- 2	- 27	- 2	153
Envelop of Carried Ro	ulette			e.		3 -	+2		•	155

BOOK III. STRAINS.

CHAPTER I. STRAIN-STEPS.

Strain in Straight Line .	-			G.	360	0.00	10	- 6 7	158
Homogeneous Strain in Plan	ie.			2.4	5 A.	1.40		+11	159
Representation of Pure Strai	in b	y Elli	pse	S	2	6	100		160
Representation of the Displa	oen	ent	1	1	31		2	1	161
Linear Function of a Vector				2.9	24	1.00	1.4		162
Properties of a Pure Function	n								164
Shear	1	4	8	÷.	- A -	1.		1	167
Composition of Strains .	34	G	14	1	243	0.405	0.40	10	168
Representation of Strains by	Ve	ctors					1.40		170
General Strain of Solid, Pr	ope	rties e	of the	Elli	osoid		161	2	172
Representation of Pure Strai									176
Properties of Hyperboloid			S.,		- 24		2.42		177
Displacement Quadric .				1					181
Linear Function of a Vector	4	4	\$	2	S.	21	345		185
Varying Strain			14	24	54		1.472		188

CHAPTER II. STRAIN-VELOCITIES.

Homogeneou	15 St	min-l	Plux		1.0	÷.						191
Circulation		1	+	19	÷.		S.		÷.	- Sa -		194
Strain-Flux	not I	Iomo	geneo	us				14		24		197
Lines of Flo	w an	d Vo	tex-I	ines								199
Circulation i	n No	n-Ho	moge	neous	Stra	in-F	hux	34	- 22	14	4	200