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PREFACE.

Tz following book, which embodies the results of my own
experience in teaching the Caleulus at Cornell and Harvard
Universities, is intended for a text-book, snd not for an
exhaustive treatise.

Its pecuoliarities are the rigorous use of the Doetrine of
Limits as & foundation of the subject, and as preliminary
to the adoption of the more direct and practically comvenient
infinitesimal notation amd nomenclature ; the early introduc-
tion of a few simple formulas and methods for integrating ;
s rather elaborate treatment of the use of infinitesimals in
pure geometry; and the attempt te excite and keep up the
interest of the student by bringing in throughout the whole
‘book, and not merely at the end, numerous applications to
practical problems in geometry and mechanics.

T am greatly indebted to Prof. J. M. Peiree, from whose
lecturea I have derived many suggestions, and to the works
of Benjamin Peirce, Todhunter, Dubamel, and Bertrand, upon

which I have drawn freely.
W. E. BYERLY.

CAMBRIDGE, Gotober, T875.
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