ELEMENTS OF THE DIFFERENTIAL AND INTEGRAL CALCULUS: METHOD OF RATES

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649571253

Elements of the Differential and Integral Calculus: Method of Rates by Arthur Sherburne Hardy

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

ARTHUR SHERBURNE HARDY

ELEMENTS OF THE DIFFERENTIAL AND INTEGRAL CALCULUS: METHOD OF RATES

Trieste

ELEMENTS

13

DIFFERENTIAL AND INTEGRAL CALCULUS.

METHOD OF RATES.

BY

ARTHUR SHERBURNE HARDY, PR.D., Professor of Mathematics in Darmouth College.

0.000

BOSTON, U.S.A.: PUBLISHED BY GINN & COMPANY. 1893.

0

×

132

PREFACE.

This text-book is based on the method of rates, which, in the experience of the author, has proved most satisfactory in a first presentation of the object and scope of the Calculus. No comparisons have been made between this method and those of limits or of infinitesimals. This larger view of the Calculus, and of mathematical reasoning and processes in general, cannot readily be given with good results in the brief time allotted the subject in the general college course.

The immediate object of the Differential Calculus is the measurement and comparison of rates of change when the change is not uniform. Whether a quantity is or is not changing uniformly, however, the rate at any instant is determined in essentially the same manner; viz. by ascertaining what its change would have been in a unit of time had its rate remained what it was at the instant in question. It is this change which the Calculus enables us to determine, however complicated the law of variation may be. This conception of the nature of the problem is simple, and seems to afford the best foundation for further and more comprehensive study; while for those who are not to make a

iii

PREFACE.

special study of mathematics it secures a more intelligent and less mechanical grasp of the problems involved than other methods whose conceptions and logic are not easily mastered in undergraduate courses.

My thanks are due to Professor Worthen, my colleague, for valuable suggestions and assistance in the reading of proofs.

ARTHUR SHERBURNE HARDY.

50

HANOVER, N.H., June 2, 1890.

iv

PART I. - THE DIFFERENTIAL CALCULUS.

CHAPTER I. - INTRODUCTORY THEOREMS.

ABT	•	PAGE
1.	Quantities of the Calculus	3
2.	Functions	3
3.	Classification of functions	4
4.	Increments	6
	Uniform change	
	Uniform motion	
7.	Varied change	7
	Differentials	
9.	Distinctions between increment, differential, and rate	8
	Corresponding differentials and simultaneous rates	
11.	Symbol of a rate	9
12.	Corresponding differentials of equals are equal	9
13.	Object of the Differential Calculus	10
	Differentiation	

CHAPTER II. - DIFFERENTIATION OF EXPLICIT FUNCTIONS.

The Algebraic Functions.

15.	Differential of	a constant	12
16.	Differential of	x+z-v	12
17.	Differential of	mx	12
18.	Differential of	32	18
19.	Differential of	#20	13
		<i>x</i> <i>x</i>	
21.	Differential of	r. Examples	14
		0000 - 10000000000000000000000000000000	

112

ART.	PAGE
22. Analytic signification of $\frac{dy}{dx}$	
23. Applications.	19
24. Geometric signification of $\frac{dy}{dx}$	
25. Relations between $\frac{ds}{dt}$, $\frac{dx}{dt}$, $\frac{dy}{dt}$	25
26. Expressions for $\frac{dx}{ds}$ and $\frac{dy}{ds}$	26
27. Applications	26

The Transcendental Functions.

.

.

The Logarithmic and Exponential Functions.

28.	Differential of log x		31
29.	Differential of a*.	Examples	32
30.	Applications		36

The Trigonometric Functions.

81,	Circular measure of an angle	37
32.	Differential of sin x	38
33.	Differential of cos z	38
54.	Differential of tan x	39
85.	Differential of cotx	39
36.	Differential of sec x	39
37.	Differential of cosec x	89
38.	Differential of vers r	40
39.	Differential of covers x. Examples	40

The Circular Functions.

40,	Differential of sin-1 r.	41
41.	Differential of cos ⁻¹ x	41
42.	Differential of tan ⁻¹ x	42
48.	Differential of cot-1x	42
44.	Differential of sec-1 x	42
45.	Differential of $\operatorname{cosec}^{-1} x$	42
46.	Differential of vers ⁻¹ x	43
47.	Differential of covers ⁻¹ x. Examples	43
	Applications	

.

vi

CHAPTER III .- SUCCESSIVE DIFFERENTIATION.

ART.		PAGE
49. Ec	uicrescent variable	49
50. Di	ifferential of an equicrescent variable	49
61. Su	accessive derived equations	49
52. No	otation	50
53. Re	emark on the equicrescent variable. Examples	50
54. Su	accessive derivatives	52
55. Si	gn of the nth derivative. Examples	54
56. De	erived functions which become ∞	56
57. No	otation	57
58. Cł	hange of the equicrescent variable. Examples	57

Applications of Successive Differentiation.

Accelerations.

59,	Accelerations	*******************************	60
60.	Signs of the axial accelerations.	Examples	61

Development of Continuous Functions.

25

61.	Limit of a variable	63
62.	Geometrical limit	64
63.	Two meanings of limit	64
64.	A quantity cannot have two limits	65
65.	Continuous functions	65
	Series	65
67.	Sum of a series	65
68.	Development of a function	65
	Maclaurin's theorem	66
70.	Taylor's theorem	68
71.	Completion of Taylor's and Maclaurin's formulæ	69
72.	Applications	72
78.	Failing cases of Taylor's and Maclaurin's formulæ	80
	수 있는 것을 가장 적용 방법을 다 가는 것 같은 것을 것을 만들었다. 그 같은 것은 것은 것은 것은 것을 위한 것을 만들고 가장 것을 것을 것을 수 있는 것을 것을 것을 했다. 것은 것을 하는 것을 것을 수 있는 것을 것을 수 있는 것을 것을 수 있는 것을 것을 수 있다.	

Evoluation of Illusory Forms,

74.	The form $\frac{0}{0}$. Examples	81
75.	The form $\frac{\infty}{\infty}$. Examples	84
76.	The form 0×∞. Examples	87
77.	The form $\infty - \infty$. Examples	88
78.	The forms ∞° , 1 ^{so} , 0 ^o . Examples	89

vii

Maxima and Minima.

ART.		PAOR
79.	Definition of maxima and minima values	91
80.	Condition of a maximum or minimum value	91
81.	Geometric illustrations	92
82.	Examination of the critical values when $f'(x) = 0$	98
83.	General method	93
84.	Abbreviated processes. Examples	95
85.	Examination of the critical values when $f'(x) = \infty$. Examples	99
	Geometrical problems	

CHAPTER IV .- FUNCTIONS OF TWO OR MORE VARIABLES.

12

	87.	Partial differentials	111
		Notation	
	89.	Partial derivatives Examples	111
		Total differential. Examples	
		Total derivative	
	92.	Total derivative with respect to any variable. Examples	115
	93.	Implicit functions of two variables. Examples	117
	94.	Evaluation of the first derivative of an implicit function. Ex-	
::*		amples	118
	• •	가는 것은 이번 가슴이 있는 것을 것이 것이 있다. 이번 것이 있는 것은 것이 있는 것이 있 것이 같이 것이 있는 것이 있 않이	

CHAPTER V. -- PLANE CURVES.

Curvature.

95.	Direction of curvature	121
96.	Points of inflexion. Examples	121
97.	Rate of curvature	123
98.	$\frac{d\phi}{ds}$ in terms of x and y	124
99.	Curvature of the circle	125
100,	Radius of curvature	125
101.	Centre of curvature	126
102.	Maximum or minimum curvature	127
108,	Intersection of the curve and circle of curvature. Examples	127

Evolutes and Envelopes.

104.	Evolute and involute		129
105.	Equation of the evolute.	Examples	129

viii

12

53