CURVE TRACING IN CARTESIAN COORDINATES, PP. 1-83

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649394135

Curve Tracing in Cartesian Coordinates, pp. 1-83 by William Woolsey Johnson

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

WILLIAM WOOLSEY JOHNSON

CURVE TRACING IN CARTESIAN COORDINATES, PP. 1-83

BIBLIOGRAPHIC RECORD TARGET

Graduate Library University of Michigan

Preservation Office

Storage Number:

ABN8360	DT 07/49/99 B /DT 07/49/99 CC - CTAT	
035/1:: a (RLIN)MIUG8	DT 07/18/88 R/DT 07/18/88 CC STAT mm E/L 1	Ļ
035/2: : a (CaOTULAS)1		
040: : a MiU c MiU	0037330	
100:1: a Johnson, William	Woolsey 1d 1841-1927	
	Cartesian coordinates, c by William Woolsey	
250: : a 5th ed., 1st thous	nd.	
260: : a New York, b J. V		
300/1: : a vi, 86 p. b dia		
650/1: 0: a Curves, Plane	, - 1	
998: : c RSH s 9124		
Sec. 1997	Scanned by Imagenes Digitales	
	Nogales, AZ	
	On behalf of	
	Preservation Division	
Th	e University of Michigan Libraries	
W	Date work Began:	
	Camera Operator:	

Alexander Livel CURVE TRACING

IN

CARTESIAN COORDINATES

BY

WILLIAM WOOLSEY JOHNSON

FROFESSOR OF MATHEMATICS AT THE UNITED STATES NAVAL ACADEMY

FIRST EDITION,
FIRST THOUSAND,

NEW YORK
JOHN WILEY & SONS
53 EAST TENTH STREET
1895

Copyright, 1884, By WILLIAM WOOLSEY JOHNSON.

PREFACE

This book relates, not to the general theory of curves, but to the definite problem of ascertaining the form of a curve given by its equation in Cartesian coordinates, in such cases as are likely to arise in the actual applications of Analytical Geometry. The methods employed are exclusively algebraic, no knowledge of the Differential Calculus on the part of the reader being assumed.

I have endeavored to make the treatment of the subject thus restricted complete in all essential points, without exceeding such limits as its importance would seem to justify. This it has seemed to me possible to do by introducing at an early stage the device of the Analytical Triangle, and using it in connection with all the methods of approximation.

In constructing the triangle, which is essentially Newton's parallelogram, I have adopted Cramer's method of representing the possible terms by points, with a distinguishing mark to indicate the actual presence of the term in the equation. These points were regarded by Cramer as marking the centres of the squares in which, in New-

ton's parallelogram, the values of the terms were to be inscribed; but I have followed the usual practice, first suggested, I believe, by Frost, of regarding them merely as points referred to the sides of the triangle as coordinate axes. It has, however, been thought best to return to Newton's arrangement, in which these analytical axes are in the usual position of coordinate axes, instead of placing the third side of the triangle, like De Gua and Cramer, in a horizontal position.

The third side of the Analytical Triangle bears the same relation to the geometrical conception of the line at infinity that the other sides bear to the coordinate axes. I have aimed to bring out this connection in such a way that the student who desires to take up the general theory of curves may gain a clear view of this conception, and be prepared to pass readily from the Cartesian system of coordinates, in which one of the fundamental lines is the line at infinity, to the generalized system, in which all three fundamental lines are taken at pleasure.

Lists of examples for practice will be found at the end of each section. These examples have been selected from various sources, and classified in accordance with the subjects of the several sections.

w. w. j.

U. S. NAVAL ACADEMY, November, 1884.

CONTENTS

			I													
Equations solved for one var	ishlei														1	PAC
Diameters																
Limiting tangents			•	•	•			•	•		•	•	•		•	
Asymptotes to an hyperbola			•			٠	*	*	•	•			*	•	•	
Parabolas				Siz		•	•	*			**	٠		•	•	
Parabolas	9 9	. 3	÷		8			13	1	8	10		•	1		
Employment of the ratio of t	he c	no	rdi	nat	24		•	1	•	į.	Š	i		1	•	
Points at infinity					-	·.	-	٠.					•		•	
Asymptotes - general metho																
Symmetry of curves		•		•	•	•		•00	•	•		٠	*:	•	•	
Examples I	• •		•			•	•	•	•	•	•	•	•	•		1
			11													
The analytical triangle										·						1
Intersections with the axes		-		076				200				œ.	-			1
The line at infinity				٠.			v.					÷	-			1
Asymptotes parallel to one of	the	ax	es										0			
Parabolic branches							3				0	0				2
Parallel asymptotes		-			8	9				1	3			1		2
Tangents at the origin	. v			19		٠					1	ं	ं			
Tangents at the points of int	erse	ctic	on '	wit	h a	ın :	ixi	s .			į.	ŝ	Ċ	ï	ċ	2
Nodes													20			2
Intersection of a curve with a	tan	ger	nt			-	*	600					0		•	2
Intersection of a curve with a Intersection of a cubic with is	ts as	sym	pto	ote:	s.					Į.	0	0	i			2
EXAMPLES II																

		_			-					_					_	_			
						II	I												
2000 1000 2000 2000 200																		- 3	PAGE
Approximate forms of	cu	rve	S	٠		•	•	٠	•	٠	•			•		7.3	٠		32
Approximate forms at	int	ini	ty		j.	85	*							•	٠			\otimes	33
Radius of curvature at	th	e c	rig	in			2	10			12			•	•	10	3	*	
Method of determining	z ti	le	eq	ıat	on	5 0	fa	ppi	rox	am	ate	cu	rv	es					36
The analytical polygor			•	1	•				•			•				+	•	٠	43
Construction of the ap	pr	OXI	ma	tin	g	cur	ves	•			*					٠			42
Sides of the polygon r	epi	res	ent	ing	, m	or	e ti	an	0	ne	app	oro	XII	nate	1	orn	1.	\mathcal{L}	45
Imaginary approximat																			
EXAMPLES III .	٠	•	•			٠	٠	•	•	•	•	÷				•	٠		48
						IV	,												
Second approximation	w	he	. 1	he	8	de	of	+1	he	no	lvo	on	ori	ves	^	nlv	- 1	he	
first approximation	1.										75	ै	. 5			,			49
Selection of the terms	w	nic	h d	lete	rn	ine	th:	e i	nei	et s	DD	rox	im	atic	n		98		55
Successive approximat																			
Asymptotic parabolas					8	•						়	8	- 9					62
Continuation of the pr																			65
EXAMPLES IV .				:: :-	20			01			00		0				23	- 65	66
													.71	*	-	0.5		1.5	-
						V	93												
Cases of equal roots .						×		*						•				×	67
Cusps							•				3.0					0.00			69
Tacnodes																			72
Cusps																			73
Ramphoid cusps										30.									74
Circuits	•	•		٠		9	$\overline{\mathbf{x}}$	•			٠	•	83	:	٠			\approx	75
Auxiliary loci	ĸ.				×	×			•	23		3						*	78
Tangents at the inters Loci representing squa	ect	ion	IS C	of a	ux	ilia	ry	loc	i										79
Loci representing squa	ire	d f	act	ors															81
Points in which severa	ıl a	ux	ilia	ry	loc	i i	ite	rse	ct										83
EXAMPLES V .																			85