METALS AND THEIR CHIEF INDUSTRIAL APPLICATIONS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649648115

Metals and Their Chief Industrial Applications by Charled R. Alder Wright

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

CHARLED R. ALDER WRIGHT

METALS AND THEIR CHIEF INDUSTRIAL APPLICATIONS

METALS

AND THEIR

CHIEF INDUSTRIAL APPLICATIONS.

METALS

AND THEIR

CHIEF INDUSTRIAL APPLICATIONS.

BEING, WITH SOME CONSIDERABLE ADDITIONS,
THE SUBSTANCE OF A COURSE OF LECTURES DELIVERED AT
THE ROYAL INSTITUTION OF GREAT BRITAIN IN 1877.

BY

CHARLES R. ALDER WRIGHT, D.Sc., &c.,

Lecturer on Chemistry

St. Mary's Hospital Medical School.

Kondon :

5.nat, Sc 318.

MACMILLAN AND CO.

1878.

[The Right of Translation and Reproduction is Reserved.]

LONDON:

R. CLAY, SONS, AND TAYLOR, PRINTERS,
SETAD STREET BILL,

23

CONTENTS.

CHAPTER I. METALS AND THEIR NATURAL SOURCES.

FCT				_		_			PAGE
I.	Distinction between	elemen	ts unc	cor	npour	nde a	and l	æ-	
	tween metals and	non-me	etals			•	•	•	
2.	List of elements .			26	•				3
3.	Metals of greater tech	nical i	import	ance	•				4
4.	Characteristics of met	als	•	•	10				5
5-	Native metals and or	es: ch	aracte	rs of	ches	nical	actio	RON	
	involved in metalli	пуу	100-000 x 100 10 - 00	•.:	AT	•	ine.	1.7	7
6.	Classification of meta	l-extra	cting	proce	sses	300			8
	General chemical cha					ing po	roces	ses	11
	Native metals .	on there is not a	#05	•c:				10.	12
9.	Simple ores	107	100	**)*O		o•		13
10.	Complex ores .		500 (5 4 0)	•	*8		040		15
II.	Relationships between	n hea	t-distr	rban	ce at	nd c	hemi	cal	1007
	reactions in wet pr			•::	•1		10 -	100	16
12.	Relationships between	n laws	conn	ecting	g heat	t-dist	urbat	oce	
	and temperature of			Section 2	•	eroman Sar	constr na		17
12.	Relationships between				e hear	t-dist	urbar	nce	j :08
-3-	and temperature of								21
14	Reciprocal reactions				Ri ov	500 545	25		22

CHAPTER II.

	METALLURGY OF THE PRECIO	us o	R NO	BLE 5	METAI	LS.	
SECT.	GOLD: Gold-washing		÷				PAGE 24
16.	Amalgamation process for working	ng gi	old qu	artz	105		27
	Refining of gold	*1			605 735	30.00	28
18.	Wet processes for gold extraction	١.			676	1000	29
19.	SILVER : Extraction by Lead pr	ocess	es ; ci	ipella	tion	12	30
20,	Liquation ; Pattinsonage ; Parke	es' p	rocess		00.000 00.000	5.53	35
21.	Wet processes for silver-extraction	on	9 %	10.	201	1.00	37
	Patio process of amalgamation	36	88	38		1.00	39
23.	Saxon process of amalgamation	œ	68	13	000	40	41
24.	Silver refining : quartation .	-		39	• 3	60	42
25.	PLATINUM	590	Ø.	2.		80	43
26.	Wollaston's process; oxyhydrog	en fo	mace		148		45
	MERCURY : Aludel process .	:4	39	1000	-0.	*	49
28.	Palatinate gallery		33	39	63	90	51
	CHAPTER	ш					
		S770.70	500				
ា	MRTALLURGY OF THE MORE IM OXIDIZABLE)			BASE	(REA	DILY	ř.
29.	IRON: Characters of chief ores	15	940	28			51
		eel, 1	pig-iro	n, and	I wro	aght-	53
	IRON: Characters of chief ores Direct and Indirect processes; st	eel, j	pig-iro	n, and	I wro	ught-	3
30,	Direct and Indirect processes; st		pig-iro	n, and	l wro	•	. 55
30.	Direct and Indirect processes; st		pig-iro	1	l wro	aght.	

		CON	TEN	TS.					vii
SECT.	Function of cyanides		93		- 60	20	*		PAGE 65
•	White and grey pig		101	15 15	25	400	90		67
-	Production of mallea					46	*	101	69
	Bessemer's process			a Pd	60 MG 201	63	** **	÷	71
	Refinery ; suddling			00 0 00	500 E		90 90	20	73
-	Rotary puddler .		·	34 34		**	***	100	77
	Steel		*	134	100	55	*		79
	Hardening and temp		of eta			•		*	80
-	C12				12	1000	*	36	82
	COPPER: Swansea			13	•	£3	100	96	86
	Henderson's process		9	13	236	•	•	*	
	Mansfield process, &		200		• 3	•33	8.	٠	89
650	LEAD: Extraction for			939			•	*	90
0	Scotch hearth; refin	ing	€.		1.0		*35		90
	TIN		*	33	• 13	£00		*8	92
200	Zinc: General char	acter a	od tr	eatme	ent of	ores	. *5	*	95
49.	Distillation	-	4			ŧ3	*		96
50.	Separation of cadmi	um	0	134	•	•00	•	¥	98
		СНАР							
	TALLURGY OF THE			TAN		IDIZAI	BLE B	IETA	
т.	ALUMINIUM .		+	20	-		20		100
52.	Preparation from Bar			3.5	2.4		•		101
8		200	+		3.4	•		20	103
~~	Magnesium .								
54-	Use as illuminating a	gent	3	W	100	Via	200	•	0.0
54- 55-	Use as illuminating a		38)	12 72	17	•		¥0	104 105
54- 55-	Use as illuminating a		38)	12 72	17	•		\$ 0	- 0
54- 55. 56.	Use as illuminating a		38)	12 72	17	•		\$ 0	105